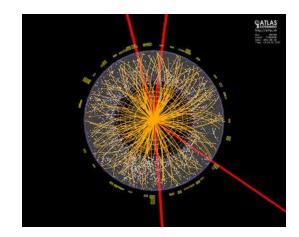
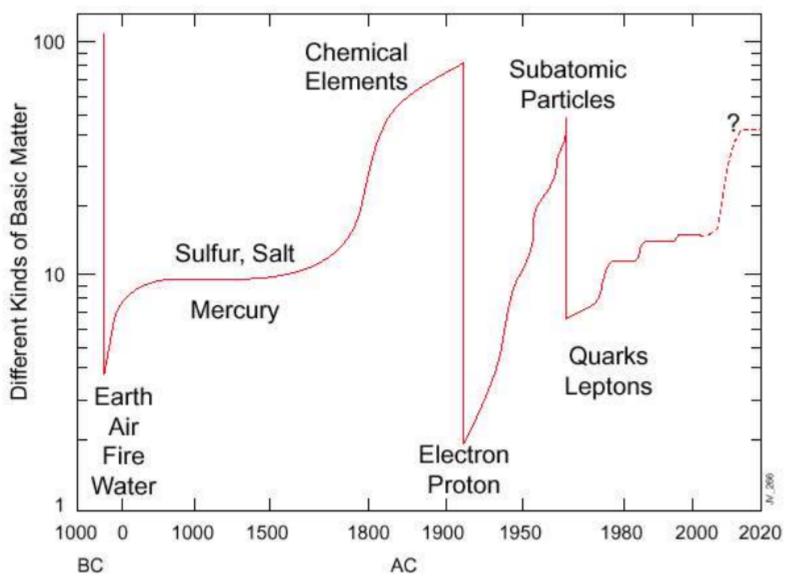
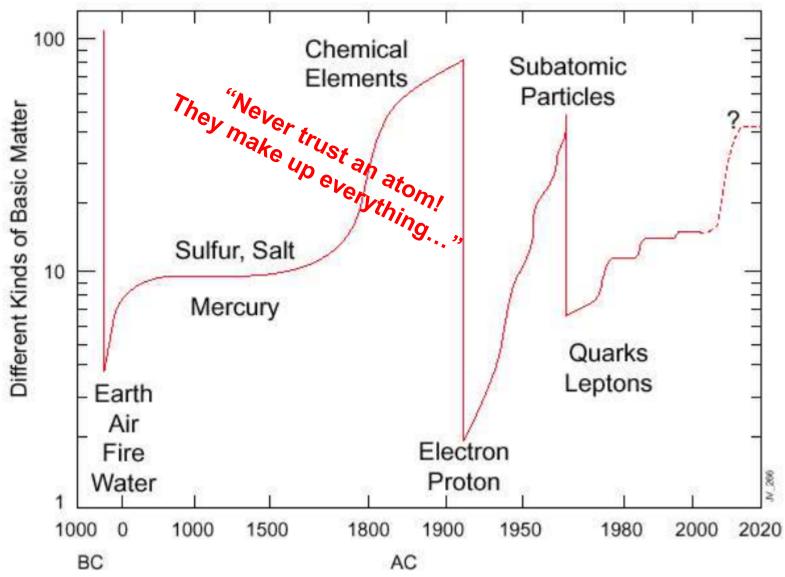


Introduction to **High Energy Physics**


Prof. Vato Kartvelishvili


FGTSP Kutaisi 1 November 2024

Fundamental constituents of matter -- history

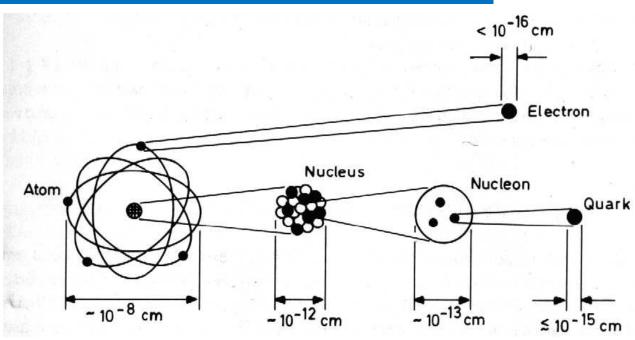


Fundamental constituents of matter -- history

Linking the mass scales

Avogadro number – link between the world of particles and your "normal" everyday world:

Any 1 gram of any matter contains $6 * 10^{23}$ nucleons (protons or neutrons)


That's a very large number -- 600'000 billion billion

Interactions and scales

'Elementary' Particles: the smallest constituents of matter (known so far): leptons and quarks, and also the interaction carriers: photons γ , gluons g, W^{\pm} and Z^0 bosons.

Well-established models and theories at present exclude gravitational interactions:

- 1. quantum theory of gravity has not been built yet;
- 2. may (should!) be tied to properties of space-time at tiny scales;
- 3. too weak to matter for particles under 'usual' circumstances.

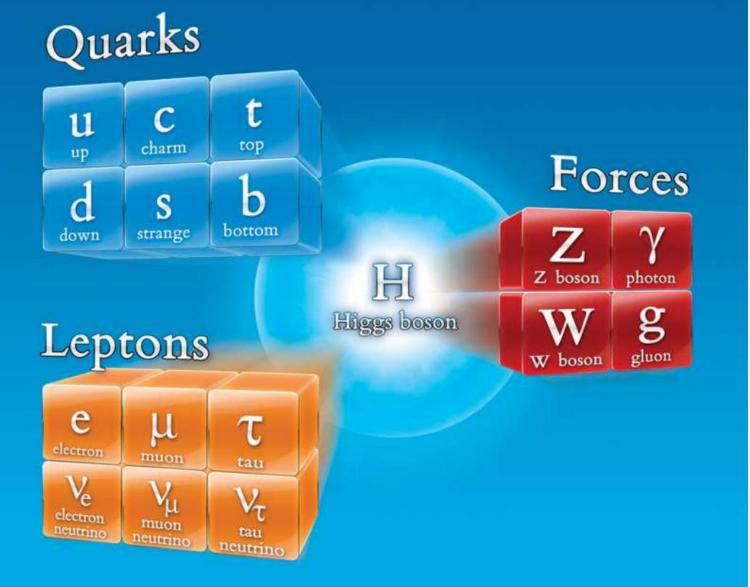
However, weak, electromagnetic and strong interactions are understood and described reasonably well.

Particle physics – What is it about?

'Elementary' Particles — $e, p, n, \nu, \mu, \tau, \gamma, W, Z \dots$ and their interactions.

You should already know a few things about them.

Is Particle Physics a difficult subject?


Compared to other areas of physics (nuclear, solid state, bio-...) and other sciences (botany, chemistry, zoology, medicine) PP is actually very simple:

- ◆ Particles have (relatively) few properties ('quantum numbers').
- These properties usually have few discrete values.
- Particles obey very simple, relatively few, well-defined laws.
- ◆ All elementary particles of the same type are absolutely identical.

Constituents of the Standard Model

What do particle physicists do?

THEORISTS:

- come up with mathematical models which describe experimental observations better and better, starting from more and more general principles and following the maths
- calculate various measurable quantities with better and better uncertainty to confront with experimental data

EXPERIMENTALISTS:

- measure those measurable quantities with better and better precision
- look for phenomena which the theory is unable to describe

If and when there is a mismatch -- we need a bigger theory!

Is SI system of units useful in particle physics?

Main properties of particles: mass m, charge e, spin s.

For an electron in SI system:

$$m_e = 9.109 \times 10^{-31} \text{ kg}$$

 $e = -1.602 \times 10^{-19} \text{ C}$
 $s_z = \pm \hbar/2 = \pm (1/2) \times 1.055 \times 10^{-34} \text{ J} \cdot \text{s}$

Particle physicists **do not** use SI system. Instead, a particle physicist would write:

$$m_e = 0.51 \text{ MeV}/c^2$$

 $e = -1 \text{ proton charge}$
 $s_z = \pm 1/2$

The last equation suggests: in particle physics

$$\hbar = 1.055 \times 10^{-34} \text{ J} \cdot \text{s} = 1$$

which, for one thing, states that in particle physics the product of units of [energy] and [time] is dimensionless.

Can we make things even simpler?

So, it's natural to choose units such that $\hbar = 1$. This means that

[energy] \times [time] =1 and also [momentum] \times [distance] =1

Now, remember the relativistic relation between Energy E, momentum \mathbf{p} and mass m:

$$E^2 = \mathbf{p}^2 \, c^2 + m^2 \, c^4$$

Relativistic particles move with speeds close to speed of light. Carrying all these huge factors like $(300000000 \text{ m/s})^2$ around will be avoided in a system of units where c=1, which simply means that [new unit of time] is [old unit of time]/c.

The choice $\hbar = 1$ and c = 1 would mean that

- Energy, momentum and mass are measured in the same units
- Angular momentum is dimensionless.
- Time and distance are measured in the same units
- Energy is inverse of time
- ◆ One needs just one dimesional unit, which is usually chosen as the unit of energy
- ♦ In Particle Physics this is 1 GeV

Natural system of units

The system of units with $\hbar=1$ and c=1 is called the Natural system:

```
1 unit of length = 1 \text{ GeV}^{-1} \simeq 0.1978 \text{ fm}
       1 unit of time = 1 \text{ GeV}^{-1} \simeq 0.6588 \cdot 10^{-24} \text{ s}
     1 \text{ unit of energy} = 1 \text{ GeV}
1 unit of momentum = 1 GeV sometimes GeV/c
       1 unit of mass = 1 GeV sometimes GeV/c^2
```

Note: 1 GeV = 1000 MeV and $(1 \text{ GeV})^{-1} = (1000 \text{ MeV})^{-1}$, but $1000 \text{ GeV}^{-1} = 1 \text{ MeV}^{-1}$

One more unit: **barn b** for cross section: $1 \text{ b} = 10^{-24} \text{ cm}^2$.

One barn is far too big a unit for particle physics:

$$1 \text{ b} = 10^3 \text{ mb} = 10^6 \ \mu \text{b} = 10^9 \text{ nb} = 10^{12} \text{ pb} = 10^{15} \text{ fb}$$

The cross sections of most interesting processes in particle physics are usually measured in femtobarns fb.

Rare processes have smaller cross sections, and vice-versa.

Collisions – the way to go!

One way to study particle properties is to collide them

Even in bird-watching, there are collisions involved:

- Photons (particles of light) from the Sun collide with the bird and get scattered, some of those scattered photons get into your eyes
- After all, a photon is just another type of an elementary particle!

We collide particles and observe what happens, trying to make sense of the results

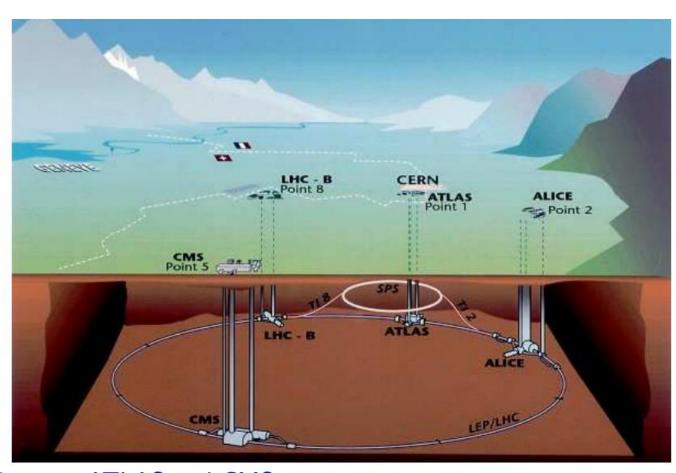
Naked eyes are not fast or sensitive or versatile enough -- we need sophisticated detectors

Large Hadron Collider at CERN

Birdseye view of CERN and neighbourhood

Alps, lake Geneva, Geneva airport

LHC ring shown as the red line



Schematic view – not to scale!

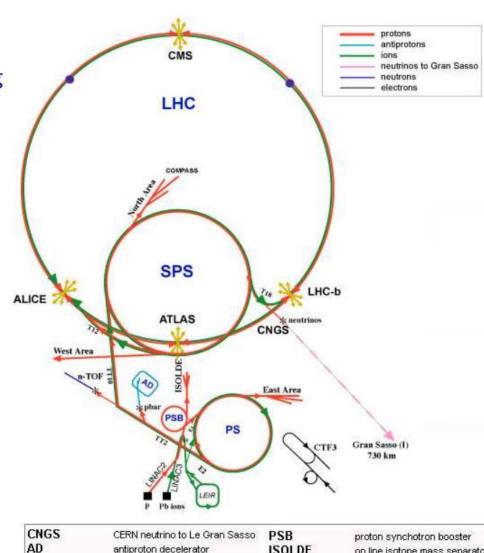
LHC is the flagship of CERN research programme, colliding two proton beams with energy of up to 14 TeV

One of the largest and most complicated engineering constructions in human history

Two multi-purpose experiments: ATLAS and CMS

Others – such as LHCb and ALICE – are more specialised

CERN accelerator complex

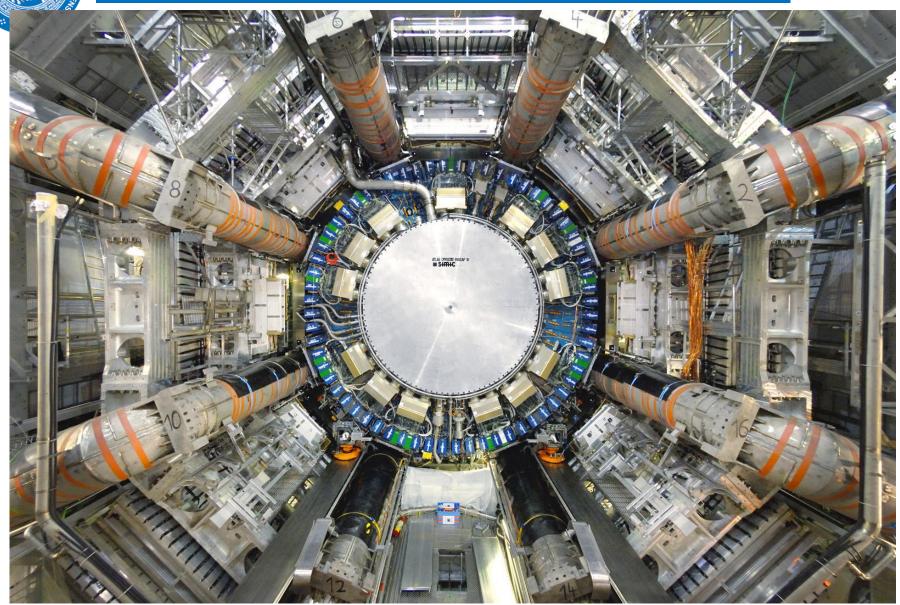


A very long chain of accelerators, culminating in the Large Hadron Collider (LHC)

Producing beams of protons, ions, antiprotons. . . even neutrinos!

Lots of experiments, all very interesting and important

I will only touch the one I know better. . .

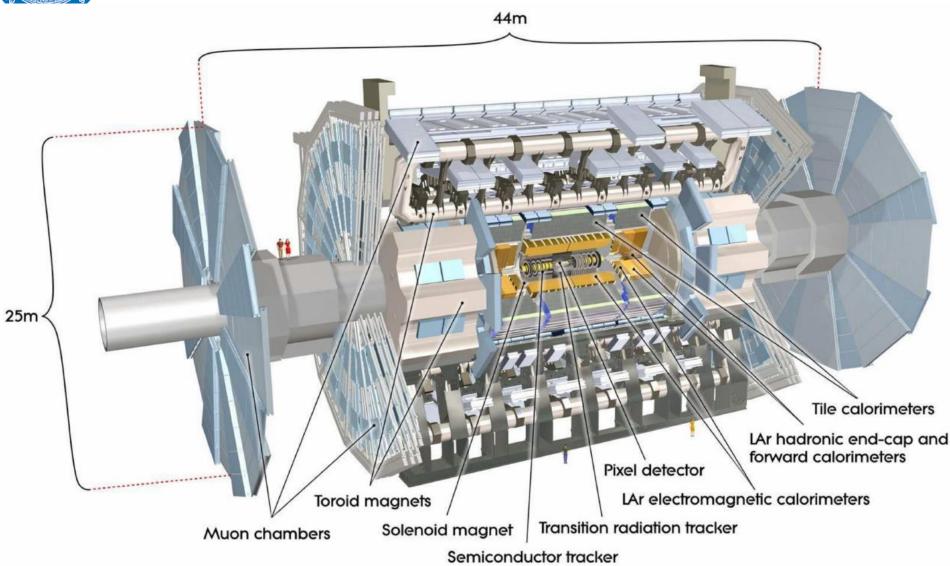

AD PS proton synchotron

ISOLDE LEIR

on line isotope mass separator low energy ion ring

ATLAS detector – insider view

Geography of ATLAS collaboration



ATLAS detector – schematic view

Are proton-proton collisions weird?

Collide two oranges at low energy – you get two oranges

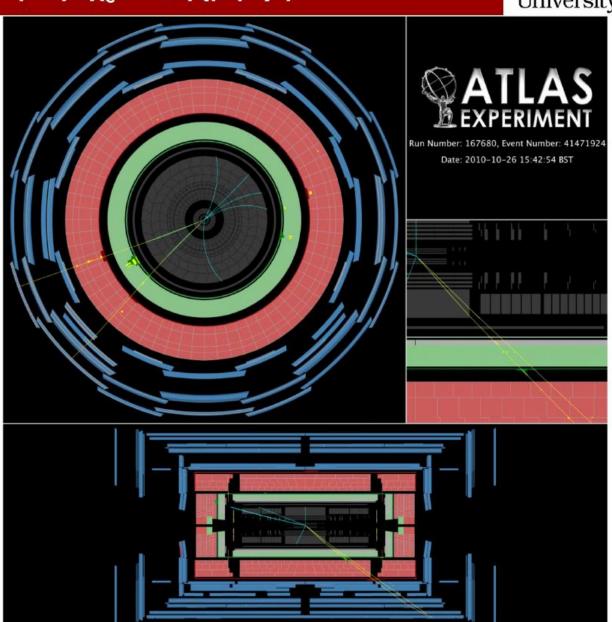
At higher energies they will get squashed, some pulp, some juice...

You will never get any cherries, apricots, apples, or water-melons

Collide two protons at low energy – you get two scattered protons

At higher energies, you will still always get two pristine protons – and often a lot of other stuff: pions, kaons, Z and W bosons, top-antitop quark pairs, and an occasional Higgs boson...

ATLAS event display: $\chi_c \rightarrow J/\psi(\mu^+\mu^-) \gamma$ candidate

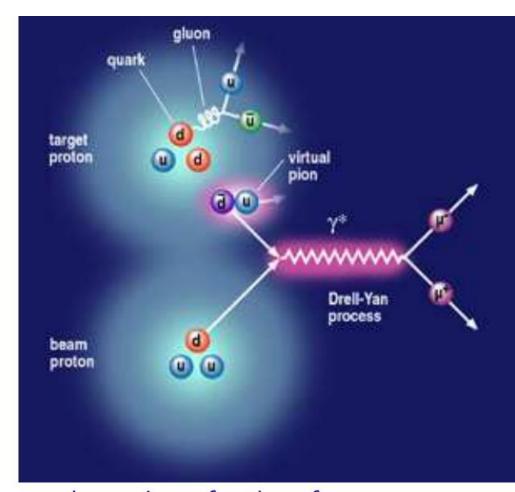


Cross section views perpendicular and parallel to the beam line

Two muon tracks spanning the Inner Detector and the Muon System

A photon tower in Eclectromagnetic Calorimeter

Invariant mass in the χ_c region

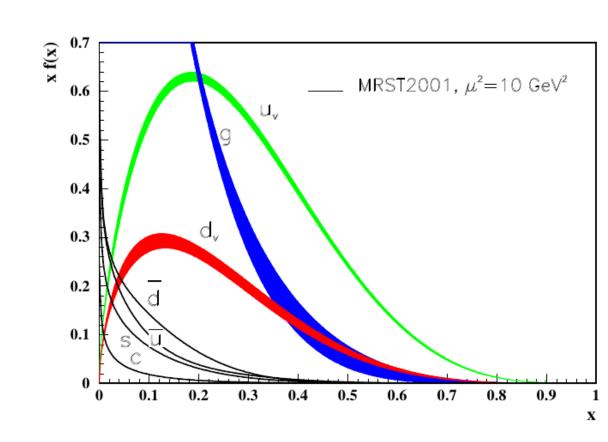

Are we really colliding protons?

Protons are composite – consist of quarks gluons and even some antiquarks

Here a quark and an antiquark collide to create a muon-antimuon pair

High energy of constituents is needed to produce something new and interesting

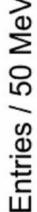
A proton is a bunch of quarks and gluons, each carrying a fraction of energy 14 TeV of pp collision energy barely enough to produce a 2 TeV object...

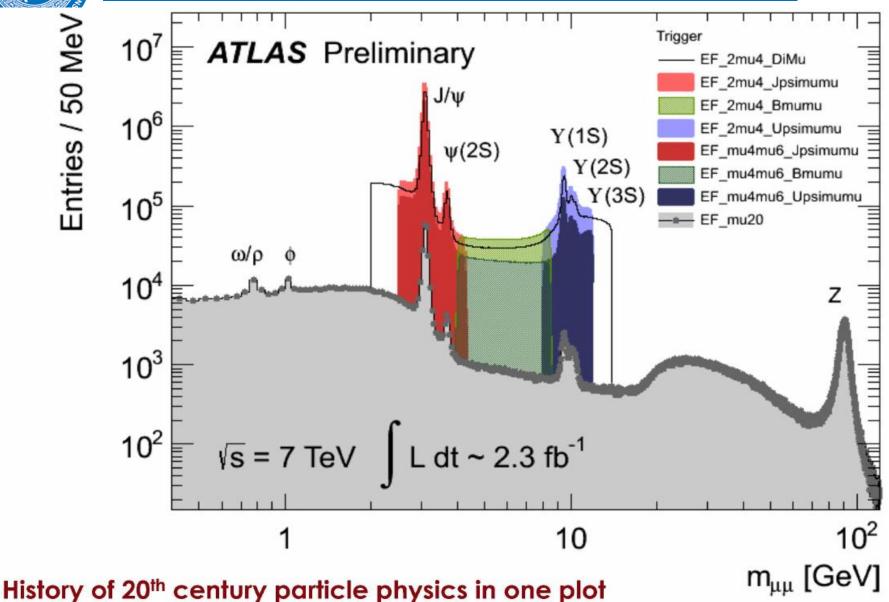

Quarks and gluons inside a proton

Only 30% of proton energy is carried by the three constituent *uud* quarks

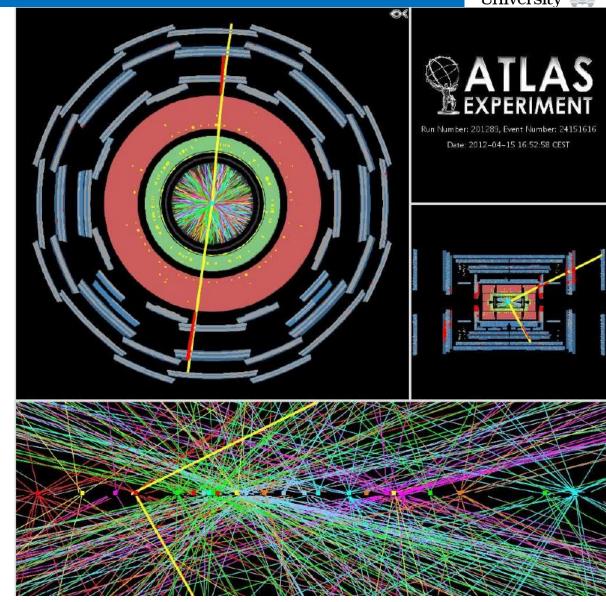
Most of proton energy is carried by gluons

The "sea" of quark-antiquark pairs is also important


$$M^2 = x_1 \times x_2 \times (13 \ TeV)^2$$


$$d\sigma \sim f_1(x_1) \times f_2(x_2) \times \hat{\sigma}(M^2)$$

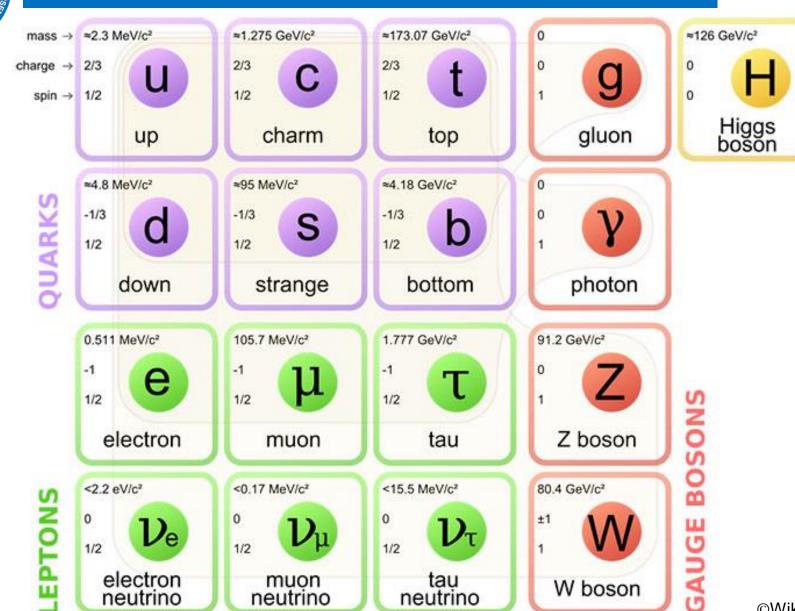
Resonances in dimuon system



Z boson production candidate

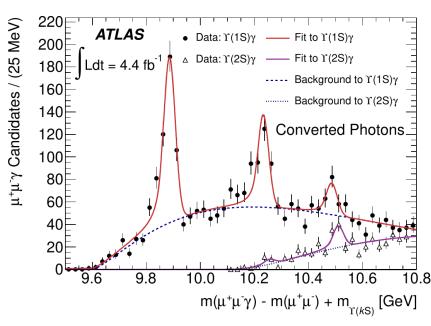
There are 20+ collisions in one bunch crossing, with a $Z \to \mu^+ \mu^-$ candidate produced in one of them.

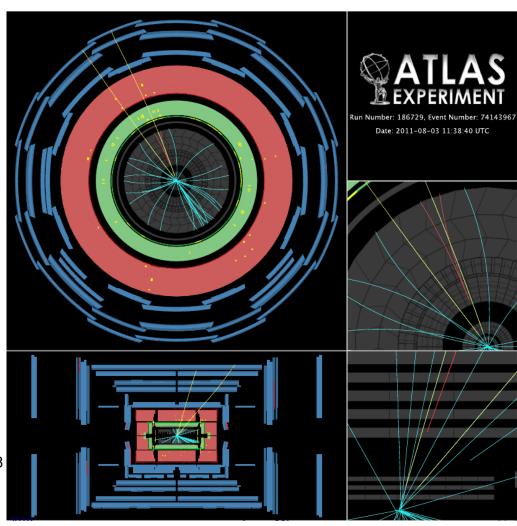
CERN overview video



Fundamental constituents of the Standard Model

@Wikimedi

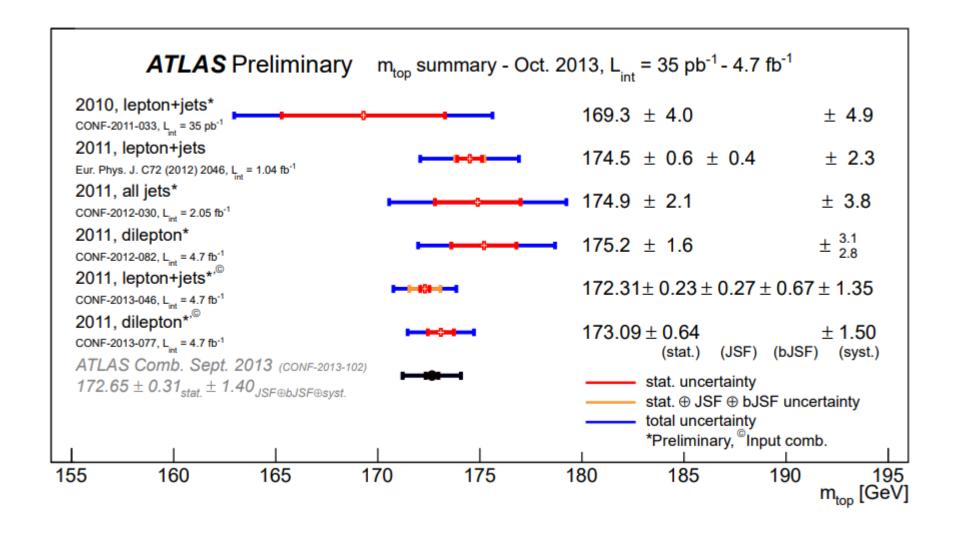



First LHC discovery -- $\chi_b(3P)$

Excited bound state of a b quark and a b antiquark

Discovered by our group at Lancaster

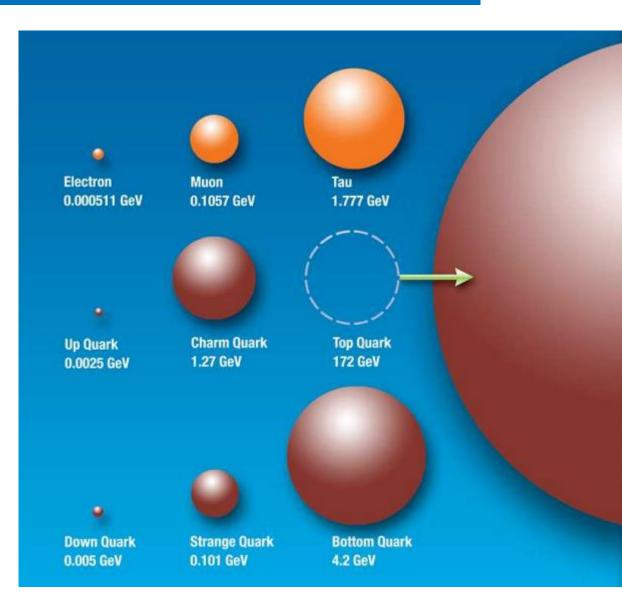
Media reaction back in 2011



Phys.Rev.Lett. 108 (2012) 152001

Top quark mass measurement progress

Generations and masses



Three "generations of fermions

Each is much heavier than the previous

The top quark is especially heavy

Nobody really knows why...

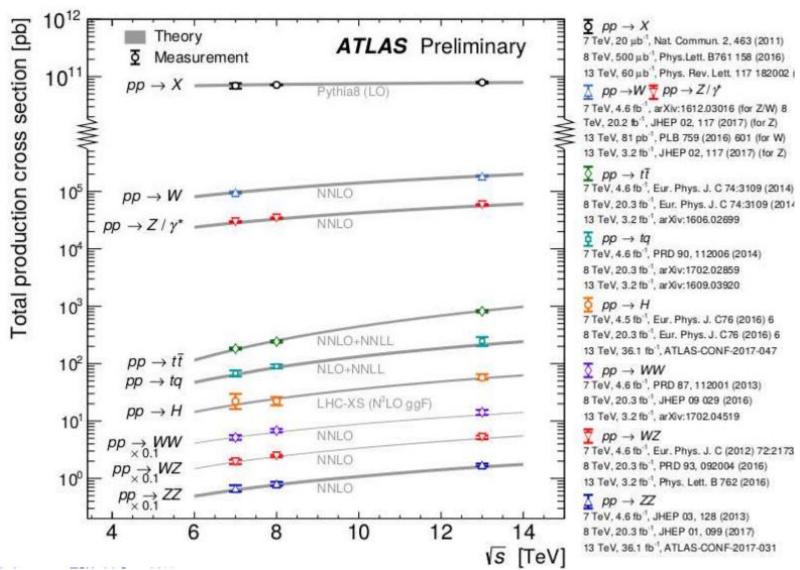
Physical theories: how things work

The development cycle of physical theories:

- 1. Find (or create!) a mathematical concept/model/theory which has the appropriate structure and properties relevant to your area of physics.
- 2. Formulate your problem in terms of this mathematical theory.
- 3. Solve the mathematical problem (nothing to do with physics whatsoever!)
- 4. Try to understand and interpret the solution.
- 5. If/when this solution becomes unsatisfactory (new data, higher precision), go to 1.

History of physics knows many examples illustrating this cycle (Newton, Shrödinger, Bohr, Heisenberg, Einstein, Dirac, Feynman...)

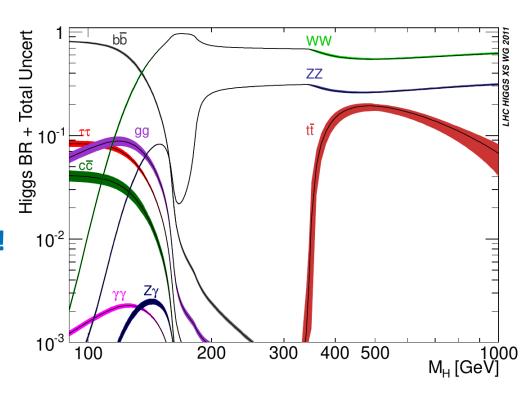
With the Standard Model of elementary particles, we are somewhere at point 4, in search for 5...


A big chunk of step 1 in many areas of physics is the Group Theory (sometimes well-hidden!)

Lesson to learn: Do the math first, think later!

SM predictions versus experiment

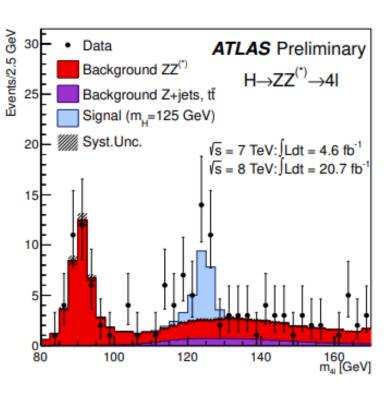
Properties of the Higgs boson

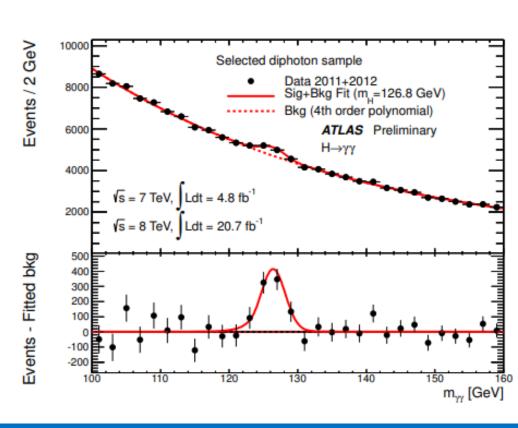


Introduced by theorists well before you were born – to make the Standard Model much more appealing mathematically

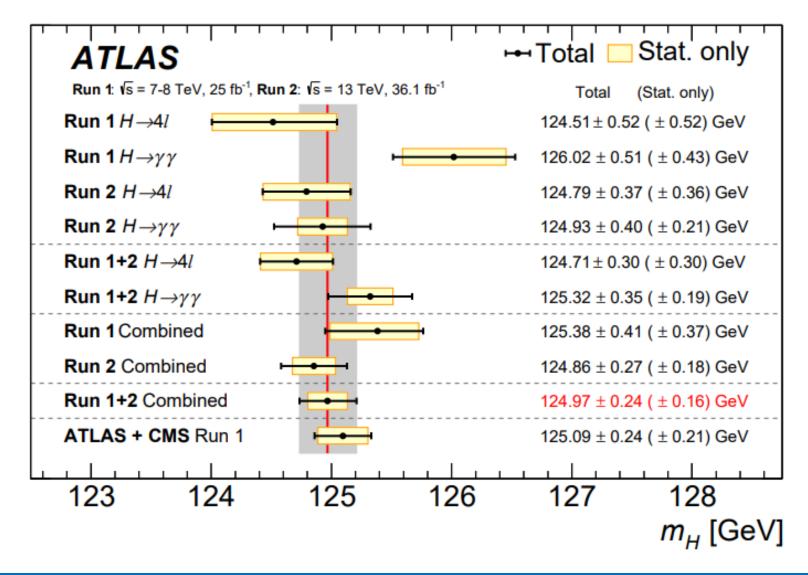
Rock-solid predictions for all its properties – except the mass...

It took almost 50 years - and construction of the LHC and its two general-purpose detectors, ATLAS and CMS, to discover...

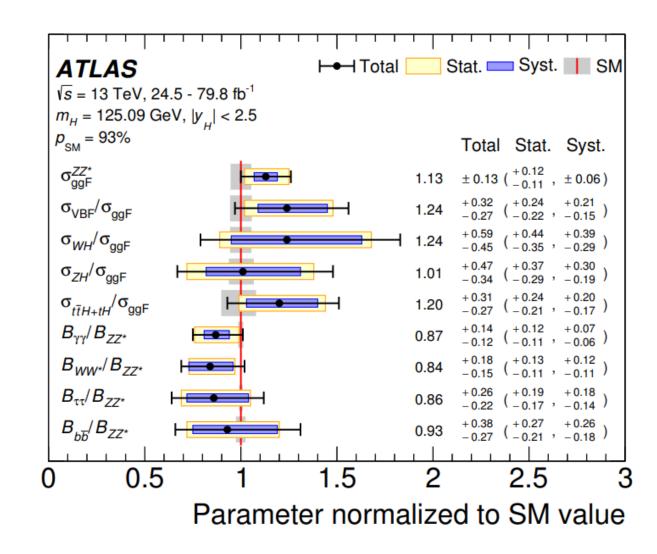

... in the most interesting place!



First observation of the Higgs boson



Higgs boson mass measurements



Higgs couplings vs SM predictions

Once the Higgs mass has been measured, the **Standard Model has** very specific – and fairly precise - predictions for the couplings of the **Higgs field with various** types of fermions and bosons

So far (sadly) no significant deviations have been found, but uncertainties are still quite lagre...

Questions to the Standard Model

The (gauge) symmetry group of the Standard Model is $SU(2) \times U(1) \times SU(3)$

Hence three types of interactions, and the variety of gauge bosons, the interaction carriers: $\gamma, W^{\pm}, Z^{0}, g$

- ♦ Why are these three types so different and the fourth, gravity, even more so?
- ♦ Why three generations?
- Why fractional electric charges of quarks?
- ♦ Why are the fermion masses so different?
- What determines the mixing of various generations?

These and many more questions cannot be answered within SM.

We need a bigger theory...

Beyond the Standard Model

- Is there a bigger symmetry group, which will become visible at higher energies?
 - ⇒ Grand Unification
- ◆ Or maybe the Poincaré-Lorentz invariance group can be extended to include anticummutation relations?
 - \Rightarrow Supersymmetry
- \bullet Or maybe our space-time has more than 3+1 dimensions, some of which are "compactified"?
 - ⇒ Large extra dimensions

These, and many other, theories exist — and predict some observable effects.

Physicists are searching for them, in a hope to answer some of the questions...

Supersymmetry searches

ATLAS SUSY Searches* - 95% CL Lower Limits

ATLAS Preliminary

	Ju	ly 2024						$\sqrt{s} = 13 \text{ TeV}$
		Model		Signatur	e ∫	L dt [fb	-1] Mass limit	Reference
Inclusive Searches)	$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_{1}^{0}$	0 e, μ mono-jet	2-6 jets 1-3 jets	$E_T^{ ext{miss}}$ $E_T^{ ext{miss}}$	140 140	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2010.14293 2102.10874
	5	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_{1}^{0}$	$0 e, \mu$	2-6 jets	$E_T^{ m miss}$	140	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2010.14293 2010.14293
Se	5	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}W\tilde{\chi}_{1}^{0}$	1 e,μ	2-6 jets		140	\tilde{g} 2.2 $m(\tilde{\chi}_1^0)$ <600 GeV	2101.01629
No.	2	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}(\ell\ell)\tilde{\chi}_{1}^{0}$	ее, µµ	2 jets	E _T miss	140	<u>g</u> 2.2 m(ξ ⁰ ₁)<700 GeV	2204.13072
Silis	3	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_{1}^{0}$	$\begin{array}{c} 0 \ e, \mu \\ \text{SS} \ e, \mu \end{array}$	7-11 jets 6 jets	E _T ^{miss}	140 140	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2008.06032 2307.01094
,		$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_{1}^{0}$	0-1 <i>e</i> , μ SS <i>e</i> , μ	3 <i>b</i> 6 jets	$E_T^{ m miss}$	140 140	$rac{ar{s}}{ar{s}}$ 2.45 $m(\xi_1^0)$ <500 GeV $m(ar{g})$ -m(π_1^0) = 300 GeV	2211.08028 1909.08457
squarks		$\tilde{b}_1 \tilde{b}_1$	0 e, μ	2 b	$E_T^{ m miss}$	140	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2101.12527 2101.12527
	ction	$\tilde{b}_1\tilde{b}_1, \tilde{b}_1 \rightarrow b\tilde{\chi}_2^0 \rightarrow bh\tilde{\chi}_1^0$	0 e, μ 2 τ	6 b 2 b	E_T^{miss} E_T^{miss}	140 140	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1908.03122 2103.08189
nbs	g	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t\tilde{\chi}_1^0$	$0-1 e, \mu$	≥ 1 jet	E_T^{miss}	140	\bar{t}_1 1.25 $m(\tilde{t}_1^0)$ –1 GeV	2004.14060, 2012.03799
.i.	pro	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow Wb\tilde{\chi}_1^0$ $\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1b\nu, \tilde{\tau}_1 \rightarrow \tau\tilde{G}$	1 e,μ 1-2 τ	3 jets/1 b 2 jets/1 b		140 140	$ar{t}_1$ Forbidden 1.05 $m(\hat{\chi}_1^0)$ -500 GeV $ar{t}_1$ Forbidden 1.4 $m(\hat{\tau}_1)$ =800 GeV	2012.03799, 2401.13430 2108.07665
3rd gen.	ect	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow \tau_1b\nu, \tau_1 \rightarrow \tau G$ $\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow c\tilde{\chi}_1^0 / \tilde{c}\tilde{c}, \tilde{c} \rightarrow c\tilde{\chi}_1^0$	0 e, μ	2 jets/1 b	E _T Emiss	36.1	r ₁ Forologen 1.4 m(r ₁)=00 GeV c 0.85 m(r ₁)=0 GeV	1805.01649
34	ij		$0e, \mu$	mono-jet	Emiss Emiss	140	\tilde{t}_1 0.55 $m(\tilde{t}_1,\tilde{c})-m(\tilde{t}_1^0)=5$ GeV	2102.10874
		$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t\tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h\tilde{\chi}_1^0$ $\tilde{t}_2\tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	1-2 e, μ 3 e, μ	1-4 <i>b</i> 1 <i>b</i>	$E_T^{ ext{miss}}$ $E_T^{ ext{miss}}$	140 140	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2006.05880 2006.05880
		$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via WZ	Multiple ℓ/je ee, μμ	ts ≥ 1 jet	$E_T^{ ext{miss}}$ $E_T^{ ext{miss}}$	140 140	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2106.01676, 2108.07586 1911.12606
		$\tilde{X}_{1}^{\pm}\tilde{X}_{1}^{\mp}$ via WW	$2e, \mu$		$E_T^{ ext{miss}}$ $E_T^{ ext{miss}}$ $E_T^{ ext{miss}}$	140	\tilde{X}_1^\pm 0.42 $m(\tilde{X}_1^0)$ =0, wino-bino	1908.08215
		$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0}$ via Wh	Multiple ℓ/je	ts	E_T^{miss}	140	\bar{X}_1^h/\bar{X}_2^0 Forbidden 1.06 $m(\bar{X}_1^0)=70$ GeV, wino-bino	2004.10894, 2108.07586
_	t	$\tilde{X}_{1}^{\pm}\tilde{X}_{1}^{\mp}$ via $\tilde{\ell}_{L}/\tilde{v}$	2 e, μ		E _T miss	140	\tilde{X}_{1}^{\pm} 1.0 $m(\tilde{\ell},\tilde{\nu})=0.5(m(\tilde{X}_{1}^{\pm})+m(\tilde{\chi}_{1}^{0}))$	1908.08215
EW	ire	$\tilde{\tau}\tilde{\tau}, \tilde{\tau} \rightarrow \tau \tilde{\chi}_{1}^{0}$ $\tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0}$	2 τ 2 e, μ	O into	Emiss	140 140	$ \vec{r} = $	2402.00603 1908.08215
	Ø		ее, µµ	0 jets ≥ 1 jet	$E_T^{ ext{miss}}$ $E_T^{ ext{miss}}$ $E_T^{ ext{miss}}$	140	7 0.26 $m(\tilde{\ell})-m(\tilde{\chi}_1^0)=10~\text{GeV}$	1911.12606
		$\hat{H}\hat{H}, \hat{H}\rightarrow h\hat{G}/Z\hat{G}$	0 e, μ 4 e, μ	≥ 3 <i>b</i> 0 jets ≥ 2 large jet	E ^{miss} E ^{miss}	140 140	\hat{H} 0.94 BR $(\hat{\chi}_1^0 \rightarrow h\hat{G}) = 1$ BR $(\hat{\chi}_1^0 \rightarrow Z\hat{G}) = 1$	2401.14922 2103.11684
			0 e, μ	≥ 2 large jet	ts E_T^{hiss}	140	H 0.55 $BR(\vec{k}_1 \rightarrow Z\vec{k}_2) = 1$ $BR(\vec{k}_1 \rightarrow Z\vec{k}_2) = 1$	2108.07586
			2 e, μ	≥ 2 jets	$E_T^{ m miss}$	140	\tilde{H} 0.77 BR $(\tilde{\chi}^0_1 \to Z\tilde{G})$ =BR $(\tilde{\chi}^0_1 \to h\tilde{G})$ =0.5	2204.13072
Q		$Direct \tilde{\mathcal{X}}_1^+ \tilde{\mathcal{X}}_1^- prod., long\text{-lived} \tilde{\mathcal{X}}_1^\pm$	Disapp. trk	1 jet	$E_T^{ m miss}$	140	$ar{\hat{X}}_1^k$ 0.66 Pure Wino Pure higgsino	2201.02472 2201.02472
Long-lived	les	Stable § R-hadron	pixel dE/dx	1	$E_T^{ m miss}$ $E_T^{ m miss}$ $E_T^{ m miss}$	140	ž 2.05	2205.06013
1-6	ig.	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$	pixel dE/dx	t	E_T^{miss}	140	\bar{g} [r(\bar{g}) =10 ns] 2.2 m($\bar{\chi}_{1}^{0}$)=100 GeV	2205.06013
101	ра	$\tilde{\ell}\tilde{\ell}, \tilde{\ell} \rightarrow \ell\tilde{G}$	Displ. lep			140	$\bar{r}, \bar{\mu}$ 0.74 $\bar{r}(\bar{\ell}) = 0.1 \text{ ns}$ $\bar{r}(\bar{\ell}) = 0.1 \text{ ns}$	ATLAS-CONF-2024-011 ATLAS-CONF-2024-011
			pixel dE/dx	C	$E_T^{ m miss}$	140	$ar{ au}$ 0.36 $ au(ar{\ell}) = 0.1 \text{ns}$ $ au(ar{\ell}) = 10 \text{ns}$	2205.06013
RPV		$\tilde{X}_{1}^{\pm}\tilde{X}_{1}^{\mp}/\tilde{X}_{1}^{0}$, $\tilde{X}_{1}^{\pm}\rightarrow Z\ell\rightarrow\ell\ell\ell$ $\tilde{X}_{1}^{\pm}\tilde{X}_{1}^{\mp}/\tilde{X}_{2}^{0}\rightarrow WW/Z\ell\ell\ell\ell\nu\nu$	3 e,μ 4 e,μ	0 jets	Emiss	140	$\hat{X}_{1}^{T}/\hat{X}_{1}^{D}$ [BR($Z\tau$)=1, BR(Ze)=1] 0.625 1.05 Pure Wino $\hat{X}_{1}^{D}/\hat{X}_{2}^{D}$ [A ₁₃₃ \neq 0, A ₁₃₅ \neq 0] 0.95 1.55 m(\hat{x}_{1}^{D})=200 GeV	2011.10543 2103.11684
		$X_1X_1/X_2 \rightarrow WW/Z\ell\ell\ell\ell\nu\nu$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq$	* ε, μ	≥8 jets	ET	140 140	$\bar{X}_{1}^{n}/\bar{X}_{2}^{n}$ [$\lambda_{css} \neq 0, \lambda_{12k} \neq 0$] 0.95 1.55 $m(\bar{X}_{1}^{0}) = 200 \text{ GeV}$ \bar{g} [$m(\bar{X}_{1}^{0}) = 50 \text{ GeV}$] 1.6 2.34 Large λ_{112}^{n}	2401.16333
		$\tilde{t}\tilde{t}, \tilde{t} \rightarrow t\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow tbs$		Multiple		36.1	\tilde{I} [$I_{11}^{(0)}$ =2e-4, 1e-2] 0.55 1.05 m($\tilde{x}_{1}^{(0)}$)=200 GeV, bino-like	ATLAS-CONF-2018-003
		$\tilde{t}\tilde{t}, \tilde{t} \rightarrow b\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{\pm} \rightarrow bbs$		≥ 4b		140	i Forbidden 0.95 $m(\tilde{\chi}_1^*)$ =500 GeV	2010.01015
	-	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow bs$		2 jets + 2 l	ь	36.7	$\tilde{t}_1 = [qq, bs]$ 0.42 0.61	1710.07171
		$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow q\ell$	2 e, μ 1 μ	2 <i>b</i>		140 136	$egin{array}{lll} ar{t}_1 & 0.4-1.85 & {\rm BR}(ar{t}_1 o be/b\mu) > 20\% \\ ar{t}_1 & [1e\text{-}10<\lambda'_{11} < 1e\text{-}8, 3e\text{-}10<\lambda'_{11} < 3e\text{-}9] & 1.0 & 1.6 & {\rm BR}(ar{t}_1 o g\mu) = 100\%, \cos\theta_1 = 1.0 \\ \end{array}$	2406.18367 2003.11956
		$\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}/\tilde{\chi}_{1}^{0}, \tilde{\chi}_{12}^{0} \rightarrow tbs, \tilde{\chi}_{1}^{*} \rightarrow bbs$	1-2 e, μ	≥6 jets		140	$\bar{\chi}^0_1$ 0.2-0.32 Pure higgsino	2106.09609
		~11~21~11.A1,2~~003,~1~~003	, µ	1010		140	Al Consignation	£100.00000

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits **ATLAS** Preliminary Status: May 2020 $\int \mathcal{L} dt = (3.2 - 139) \text{ fb}^{-1}$ $\sqrt{s} = 8, 13 \text{ TeV}$ Jets† $\mathsf{E}_{\mathsf{T}}^{\mathsf{miss}}$ $\int \mathcal{L} \, dt [\mathsf{fb}^{-1}]$ Model Reference Limit ADD $G_{KK} + g/q$ 1711.03301 $0e, \mu$ 36.1 7.7 TeV ADD non-resonant yy n = 3 HLZ NLO2 y 36.7 8.6 TeV 1707.04147 ADD QBH 2j 37.0 Mth 8.9 TeV n = 61703.09127 ADD BH high Σp_T n=6, $M_D=3$ TeV, rot BH ≥ 1 e, µ ≥ 2 i 3.2 8.2 TeV 1606.02265 ADD BH multijet ≥ 3 i 3.6 Mth n=6, $M_D=3$ TeV, rot BH 9.55 TeV 1512.02586 2γ G_{KK} mass RS1 $G_{KK} \rightarrow \gamma \gamma$ $k/\overline{M}_{Pl} = 0.1$ 36.7 4.1 TeV 1707.04147 Bulk RS $G_{KK} \rightarrow WW/ZZ$ multi-channel 36.1 G_{KK} mass 2.3 TeV $k/\overline{M}_{Pl} = 1.0$ 1808.02380 Bulk RS $G_{KK} \rightarrow WV \rightarrow \ell \nu qq$ $k/\overline{M}_{Pl} = 1.0$ 1 e, µ 139 G_{KK} mass 2.0 TeV 2004 14636 ≥ 1 b, ≥ 1J/2j Yes **g_{KK}** mass Bulk RS $g_{KK} \rightarrow tt$ 36.1 $\Gamma / m = 15\%$ 1 e, μ 3.8 TeV 1804.10823 2UED / RPP $\geq 2 \text{ b}, \geq 3 \text{ j}$ KK mass Tier (1,1), $\mathcal{B}(A^{(1,1)} \to tt) = 1$ 36.1 1.8 TeV 1803.09678 SSM $Z' \rightarrow \ell\ell$ 2 e, μ 139 5.1 TeV Z' mass 1903.06248 SSM $Z' \rightarrow \tau \tau$ 2 τ 36.1 Z' mass 2.42 TeV 1709.07242 Leptophobic $Z' \rightarrow bb$ 2 b 36.1 Z' mass 2.1 TeV 1805.09299 Leptophobic $Z' \rightarrow tt$ 0 e, μ $\Gamma/m = 1.2\%$ 2005.05138 ≥ 1 b, ≥ 2 J Yes 139 Z' mass 4.1 TeV SSM $W' \rightarrow \ell \nu$ 1 e. μ 139 W' mass 1906.05609 Ves 6.0 TeV Yes 36.1 W' mass 3.7 TeV SSM $W' \rightarrow \tau v$ 1 T 1801.06992 HVT $W' \rightarrow WZ \rightarrow \ell \nu qq \text{ model B}$ $1e, \mu$ Yes 139 W' mass 4.3 TeV $g_V = 3$ 2004.14636 $HVT V' \rightarrow WV \rightarrow qqqq \mod B$ 0 e, μ 2 J 139 V' mass 3.8 TeV $g_V = 3$ 1906.08589 HVT V' → WH/ZH model B $g_V = 3$ multi-channel 36.1 V' mass 2.93 TeV 1712.06518 HVT $W' \rightarrow WH$ model B 0 e, μ ≥ 1 b, ≥ 2 J 139 W' mass 3.2 TeV $g_V = 3$ CERN-EP-2020-073

multi-channel

2 e, μ

≥1 *e,µ*

0 e, μ

0 e, μ

 $0-1 e, \mu$

1.2 e

 $1,2 \mu$

2τ

0-1 e, μ

multi-channel

multi-channel

1 e, µ

1 y

 $3e, \mu$

3 e, μ, τ

 $1e, \mu$

 2μ

2,3,4 e, µ (SS)

3 e, μ, τ

 $\sqrt{s} = 13 \text{ TeV}$

partial data

VLQ $T_{5/3}T_{5/3}|T_{5/3} \rightarrow Wt + X$ 2(SS)/ $\geq 3 e, \mu \geq 1 b, \geq 1 j$

1 J

2j

≥1 b, ≥1 j

1 - 4i

1 - 4i

1 J, ≤ 1 j

1 b, 0-1 J

≥ 2 j

≥ 2 j

2 b

2 b

≥ 4 j

2j

1 j

1 b, 1 j

≥ 2 j

2 j

 $\sqrt{s} = 13 \text{ TeV}$

full data

 $1 e, \mu \ge 1 b, \ge 1j$

 $0 e \mu, 2 \gamma \ge 1 b \ge 1j$

36.1

80

37.0

139

36.1

36.1

36.1

36.1

36.1

36.1

36.1

36.1

36.1

36.1

36.1

36.1

79.8

20.3

139

36.7

36.1

20.3

20.3

79.8

36.1

36.1

20.3

36.1

34.4

3.2

Yes

W_R mass

W_R mass

М.

mø

LQ mass

LQ mass

LQ" mass

LQ² mass

T mass

B mass

Y mass

B mass

q* mass

q* mass

b* mass

Nº mass

H^{±±} mass

monopole mass

multi-charged particle mass

 10^{-1}

T_{5/3} mas

LRSM $W_R \rightarrow tb$

CI qqqq

CI llgg

CI tttt

LRSM $W_R \rightarrow \mu N_R$

VVXX EFT (Dirac DM)

Scalar LQ 1st gen

Scalar LQ 2nd gen

Scalar LQ 3rd gen

Scalar LQ 3rd gen

 $VLQ Y \rightarrow Wb + X$

 $VLQ B \rightarrow Hb + X$

 $VLQ QQ \rightarrow WqWq$

Excited quark $q^* \rightarrow qg$

Excited quark $q^* \rightarrow q \gamma$

Excited quark $b^* \rightarrow bg$

Excited lepton \(\ell^* \)

Excited lepton v*

Type III Seesaw

LRSM Majorana v

Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$

Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$

Multi-charged particles

 $\sqrt{s} = 8 \text{ TeV}$

Magnetic monopoles

Axial-vector mediator (Dirac DM)

Scalar reson. $\phi \rightarrow t\chi$ (Dirac DM)

VLQ $TT \rightarrow Ht/Zt/Wb + X$

 $VLQ BB \rightarrow Wt/Zb + X$

Colored scalar mediator (Dirac DM)

2.37 TeV

3.25 TeV

3.4 TeV

2.57 TeV

1.55 TeV

1.4 TeV

1.37 TeV

1,34 TeV

1.21 TeV

1.03 TeV

970 GeV

1.56 TeV

1.64 TeV

1.6 TeV

1.85 TeV

2.6 TeV

3.0 TeV

3.2 TeV

700 GeV

560 GeV

870 GeV

1.22 TeV

1.67 TeV

5.0 TeV

6.7 TeV

5.3 TeV

 $m(N_R) = 0.5 \text{ TeV}, g_L = g_R$

 $g_q=0.25$, $g_\chi=1.0$, $m(\chi)=1$ GeV

 $y = 0.4, \lambda = 0.2, m(\chi) = 10 \text{ GeV}$

 $\mathcal{B}(T_{5/3} \to Wt) = 1$, $c(T_{5/3}Wt) = 1$

 $\mathcal{B}(Y \to Wb) = 1$, $c_R(Wb) = 1$

only u^* and d^* , $\Lambda = m(q^*)$

only u^* and d^* , $\Lambda = m(q^*)$

 $m(W_R) = 4.1 \text{ TeV}, g_L = g_R$

DY production, |a| = 5e

DY production, $\mathcal{B}(H_{\ell}^{\pm\pm} \rightarrow \ell \tau) = 1$

DY production, $|g| = 1g_D$, spin 1/2

Mass scale [TeV]

21.8 TeV η_{LL}

 $g=1.0, m(\chi) = 1 \text{ GeV}$

 $m(\chi) < 150 \text{ GeV}$

 $\mathcal{B}(LQ_3^u \rightarrow b\tau) = 1$

 $\mathcal{B}(LQ_3^d \to t\tau) = 0$

SU(2) doublet

SU(2) doublet

 $\kappa_B = 0.5$

 $\Lambda = 3.0 \text{ TeV}$

 $\Lambda = 1.6 \text{ TeV}$

DY production

 $|C_{4z}| = 4\pi$

 $\beta = 1$

 $\beta = 1$

1807.10473

1904.12679

1703.09127

CERN-EP-2020-066

1811.02305

1711.03301

1711.03301

1608.02372

1812.09743

1902.00377

1902.00377

1902.08103

1902.08103

1808.02343

1808.02343

1807,11883

1812.07343

ATLAS-CONF-2018-024

1509.04261

1910.08447

1709.10440

1805.09299

1411.2921

1411.2921

ATLAS-CONF-2018-020

1809,11105

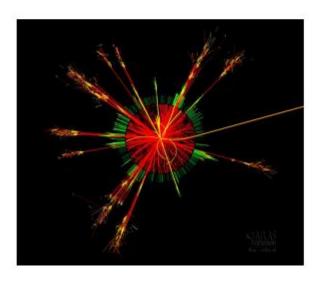
1710.09748

1411,2921

1812.03673

1905.10130

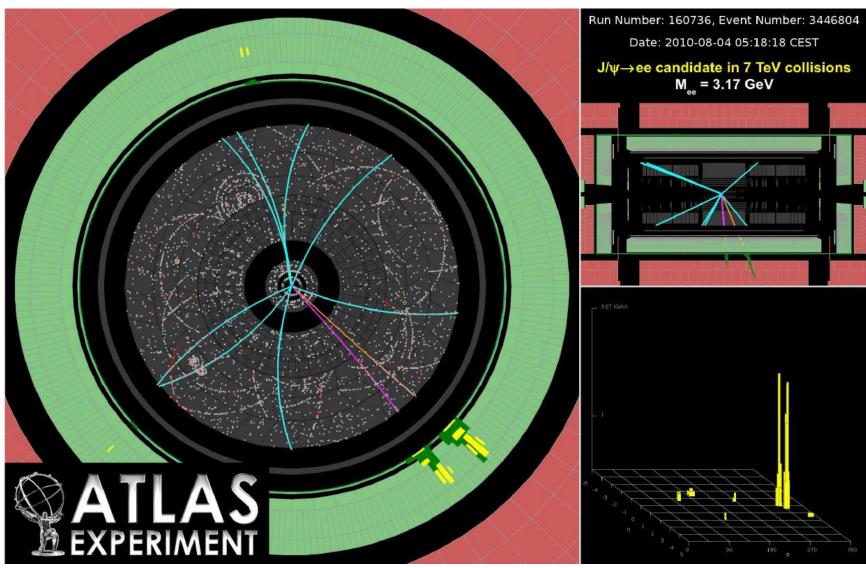
^{*}Only a selection of the available mass limits on new states or phenomena is shown.


[†]Small-radius (large-radius) jets are denoted by the letter j (J).

Summary and outlook

- Huge amount of work has been done by CERN experiments
- Antimatter has been created and studied in some detail
- The Higgs boson discovered in 2012 so far looks like the Standard Model Higgs
- The Standard Model is standing strong no SUSY, no sign of any exotics either. . .
- Some data still to be analysed, and much more data is still to come
- Hoping for many fascinating discoveries in the near future!

THANKS FOR LISTENING! **ANY QUESTIONS?**



Hadronic production of charmonium

CERN overview video

