დეტექტორები

Sergey Barsuk, IJCLab Orsay, sergey.barsuk@ijclab.in2p3.fr

- Passage of particles through matter
- ☐ Photon detectors
- Scintillators
- Cherenkov light detectors, time-of-flight detectors
- Calorimeters
- Not covered : Tracking detectors

Usual disclaimers:

Selective and biased introduction by a particle physicist

Many simplifications, avoid formalism

Slides of many colleagues used without proper

Some units and conventions

□ Wanted: particle ID (mass, charge) and particle kinematics (momentum, energy)

$$E^2 = p^2 c^2 + m_0^2 c^4$$

measured in **eV** energy **E**:

momentum p: measured in eV/c

mass m_0 : measured in eV/c^2

$$\beta = \frac{v}{c} \qquad (0 \le \beta < 1) \quad \gamma = \frac{1}{\sqrt{1 - \beta^2}} \qquad (1 \le \gamma < \infty)$$

$$E = m_0 \gamma c^2 \qquad p = m_0 \gamma \beta c \qquad \beta = \frac{pc}{E}$$

$$E = m_0 \gamma c^2$$
 $p = m_0 \gamma \beta c$ $\beta = \frac{pc}{E}$

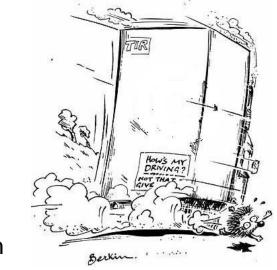
1 eV is a small energy.

 $1 \text{ eV} = 1.6 \cdot 10^{-19} \text{ J}$

 $m_{\text{bee}} = 1g = 5.8 \cdot 10^{32} \text{ eV}$

 $v_{\text{bee}} = 1 \text{ m/s} => E_{\text{bee}} = 10^{-3} \text{ J} = 6.25 \cdot 10^{15} \text{ eV}$

 $E_{LHC} = 14 \cdot 10^{12} \text{ eV}$

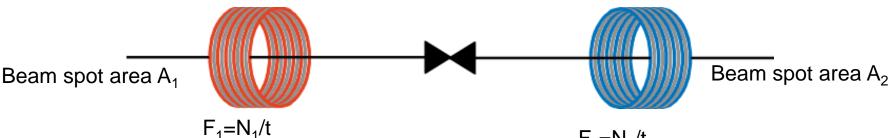

However,

LHC has a total stored beam energy 10^{14} protons x $14 \cdot 10^{12}$ eV ~ 10^8 J

> or, if you like, one 100 T truck at 100 km/h

http://www.nature.com/news/2004/040105/images/bee_180.jpg

from C. Joram, SSL 2003

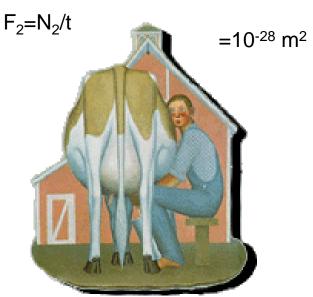


or **eV**

or **eV**

Some units and conventions

Cross section σ or the differential cross section $d\sigma/d\Omega$ is an expression of the probability of interactions.



The interaction rate, R_{int} , is then given as:

$$R_{
m int} \propto rac{N_1 N_2}{A \cdot t}$$
 σ has the dimension area. $\sigma \mathcal{L}$ 1 barn = 10⁻²⁴ cm² = 10⁻²⁸ m²

The luminosity, \mathcal{L} is given in cm⁻²s⁻¹

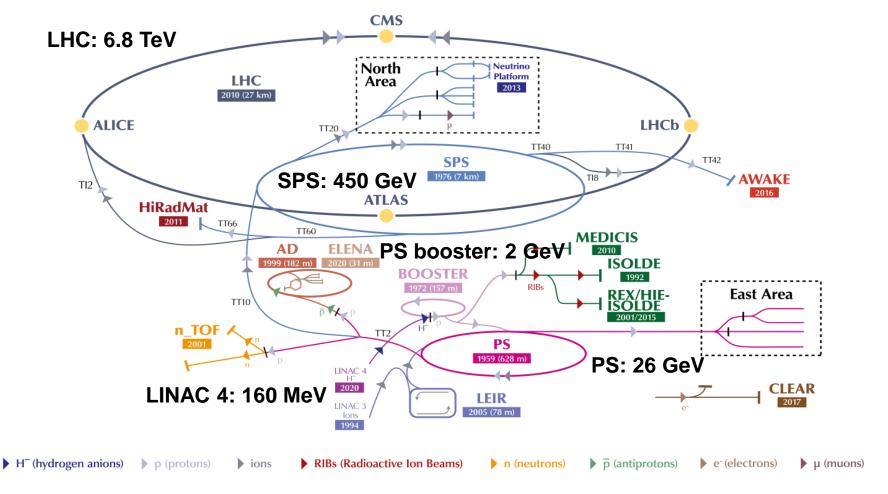
The integrated luminosity, $\int \mathcal{L} dt$, is given in barn-1 from C. Joram, SSL 2003

Grant Wood, Fruits of Iowa: Boy Milking Cow, 1932

- $oldsymbol{\square}$ At early LHC in 100 days of operation per year: $\int \!\! \mathcal{L} \!\! dt \sim$ 10 fb⁻¹ for $\!\! \mathcal{L} \!\! \sim 10^{33}$ cm⁻²s⁻¹
- Next e⁺e⁻ machines → few 10 x ab⁻¹

To reach unexplored area of HEP:

Increase Energy

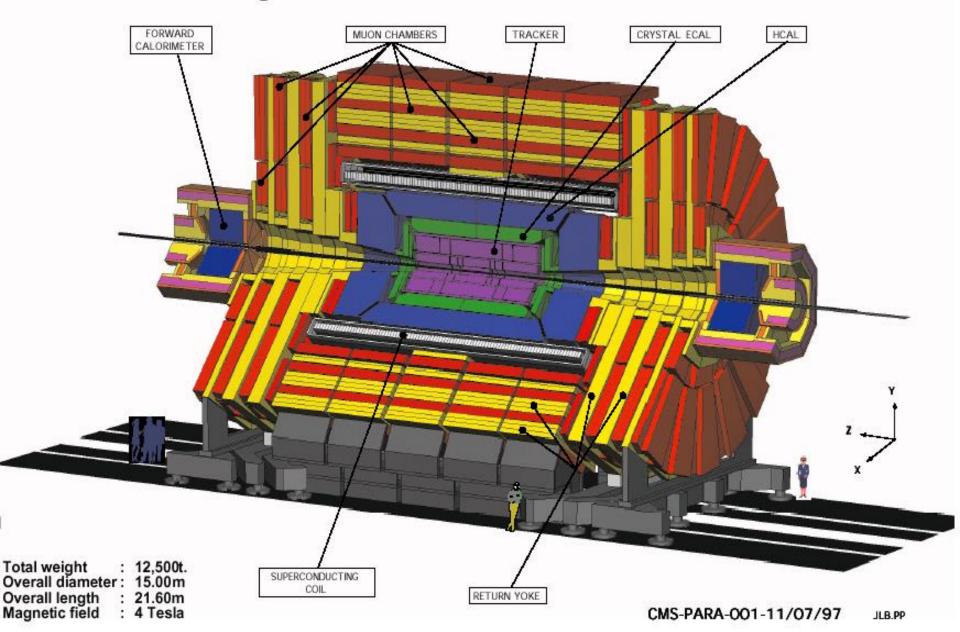

Accelerators

Theory & Analysis

Detectors

The CERN accelerator complex

The CERN accelerator complex Complexe des accélérateurs du CERN

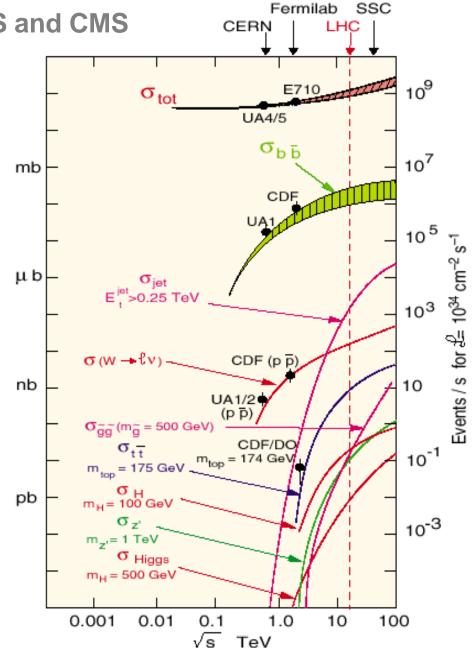

LHC - Large Hadron Collider // SPS - Super Proton Synchrotron // PS - Proton Synchrotron // AD - Antiproton Decelerator // CLEAR - CERN Linear

Electron Accelerator for Research // AWAKE - Advanced WAKefield Experiment // ISOLDE - Isotope Separator OnLine // REX/HIE-ISOLDE - Radioactive

EXperiment/High Intensity and Energy ISOLDE // MEDICIS // LEIR - Low Energy Ion Ring // LINAC - LINear ACcelerator //

n_TOF - Neutrons Time Of Flight // HiRadMat - High-Radiation to Materials // Neutrino Platform

CMS A Compact Solenoidal Detector for LHC


Discovery of

with ATLAS and CMS

- With ATLAS and Cit
- ☐ Inelastic: 10⁹ Hz
- ☐ Higgs (100 GeV/c²): 0.1 Hz
- ☐ Higgs (600 GeV/c²): 10⁻² Hz
- Selection: 1:10^{10–11}
- Operate in high radiation environment
- Resolve MANY superimposed events per BX
- High granularity detectors
- Fast electronics/detectors (25 ns)

Energy scale crucial

What can we measure/register?

Measure stable and quasi-stable particles (e, γ , μ , π , K, p, n, v): Kinematics (momentum and/or energy) The way particle interacts with / passes through detectors

All other particles reconstructed via their decays to (quasi-) stable particles :

Invariant mass of the system of daughter particles

+ Decay vertex separated from production vertex for some particles decaying via weak interaction

Main goal of instrumentation for HEP:

Precisely/fast **measure kinematics** of (quasi-) stable particles
Unambiguously/fast **identify** them

For that:

We study **how particles interact with the matter** and

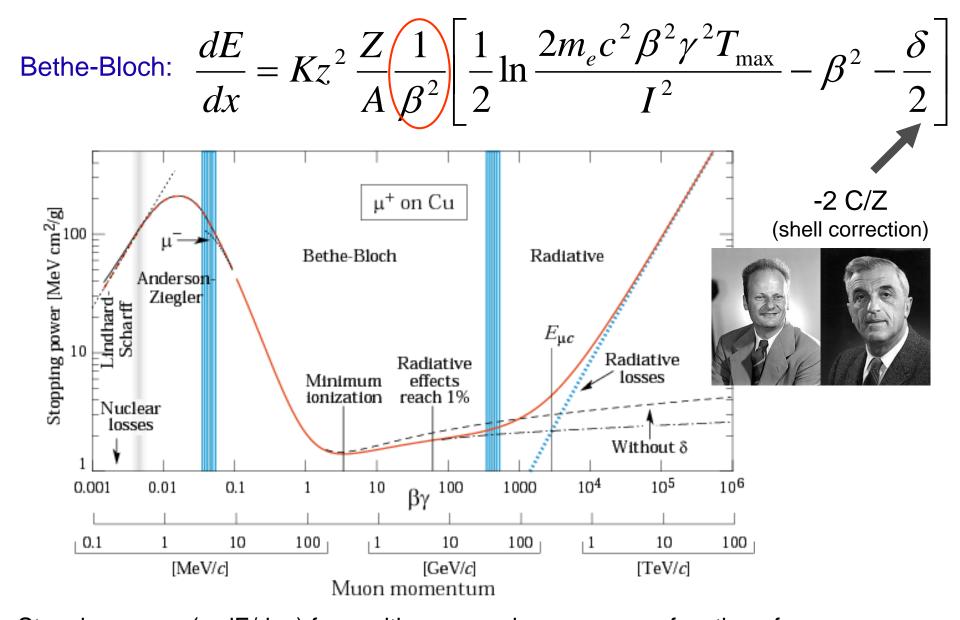
We choose the **detector technologies** that match the physics tasks

Passage of particles through matter

General statements

- → Any device that is to detect a particle must interact with it in some way.
- → If the particle is to pass through essentially undeviated, this interaction must be a soft electromagnetic one.

(Heavy) charged particle interaction with matter


Energy (kinetic) loss by Coulomb interaction with the atoms/electrons:

Excitation : the atom (or molecule) is excited to a higher level

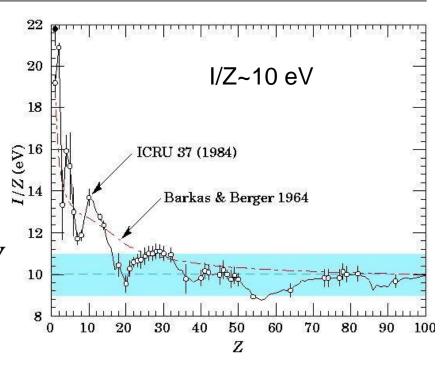
```
atom* \rightarrow atom + \gamma
```

low energy photons of de-excitation

- light detection
- lonization : the electron is ejected from the atom electron / ion pair
 - → charge detection
- ☐ Instead of ionization/excitation real photon can be produced under certain conditions
 - → Cherenkov or Transition radiation Contribute very little to the energy loss (< 5%), can be neglected but they are used for particle ID

Stopping power (-<dE/dx>) for positive muons in copper as a function of $\beta \gamma = p/Mc$ over nine orders of magnitude in momentum (12 orders of magnitude in kinetic energy). Solid curves indicate the total stopping power.

$$K = -4\pi N_A r_e^2 m_e c^2 \approx 0.307 MeV. g^{-1}. cm^2$$


Maximum kinetic energy that can be imparted to a free electron in a single collision:

$$T_{\text{max}} = \frac{2m_e c^2 \,\beta^2 \gamma^2}{1 + 2\gamma m_e / M + (m_e / M)^2}$$

I: Ionization constant or mean excitation potential, takes into account properties of electronic orbitals. Theoretical calculation seems quite complex and not done for many elements

→ semi-empirical approach

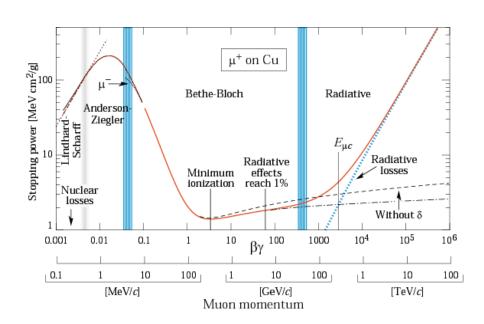
Good approximation

Bethe-Bloch with corrections yields few % accuracy for energy losses in Cu like material for the "Bethe-Bloch" region

Bethe-Bloch at Low energy:

- \square C/Z : shell correction to account for atomic binding. At low energy the incident particles have less chance to interact with the electronic inner orbits. For copper ~1% at $\beta\gamma$ =0.3
- \square 0.01 < β < 0.05 : phenomenological fitting, Andersen and Ziegler
- \square β < 0.01 ("velocity" of outer atomic electrons) :
 - electronic stopping power ~ β, Lindhard
- at very low energy (e.g. < 100 eV protons) : non-ionizing energy loss dominates

 ■ Bethe-Bloch with corrections → precise at ~1% level down to β~0.05 (~1 MeV for protons)

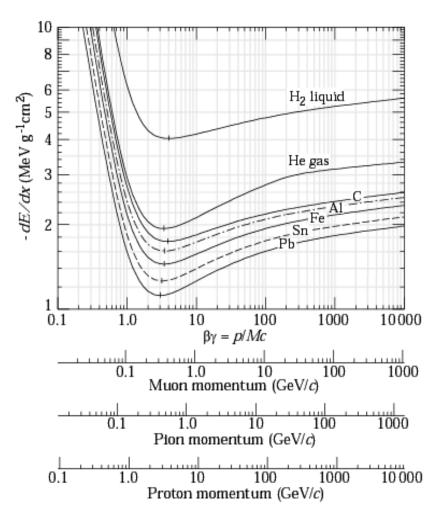

Bethe-Bloch at High energy: density effect

At high energies, the electric field extends, and distant-collision

contribution increases as Inβγ

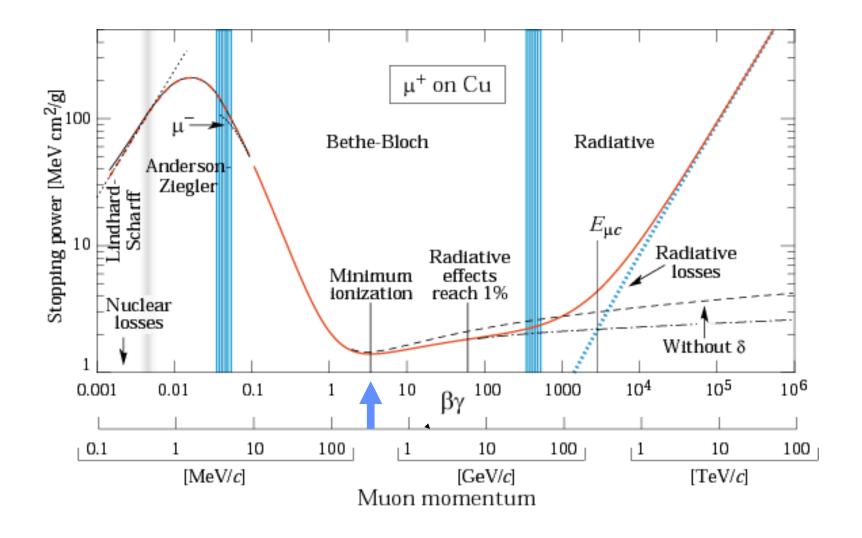
- Relativistic rise ~2lnβγ
- \Box δ(βγ)/2 : charge density effect correction, comes from polarization of the atoms along incoming particle => screening effect of the field, decreases loss at high energy.

At very high energies: $\delta/2 \rightarrow \ln(\hbar\omega_p/I) + \ln\beta\gamma - 1/2$

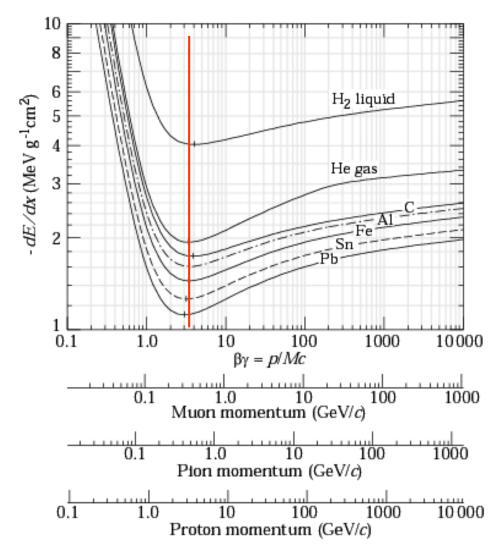

Bethe-Bloch at High energy: density effect

At very high energies: $\delta/2 \rightarrow \ln(\hbar\omega_p/I) + \ln\beta\gamma - 1/2$

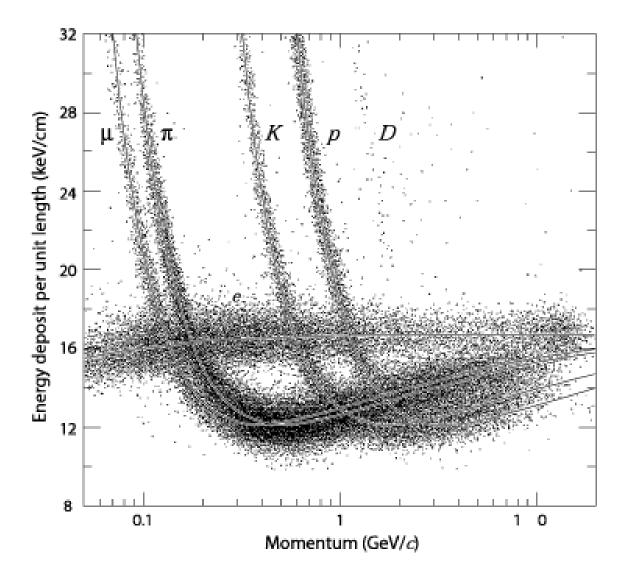
Remaining relativistic rise from the $\beta^2\gamma$ growth of T_{max} , due to (rare) large energy transfers to a few electrons


When these events are excluded

→ Fermi plateau


Mean energy loss rate in liquid (bubble chamber) hydrogen, gaseous helium, carbon, aluminium, iron, tin, and lead.

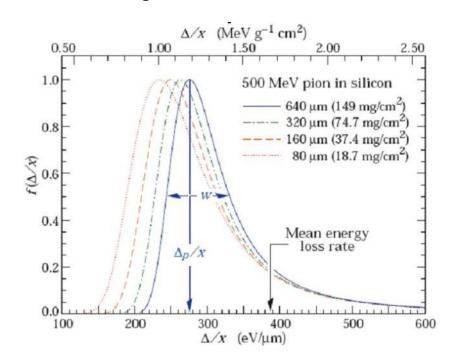
Minimum Ionizing Particle:



The minimum is approximately independent of the material

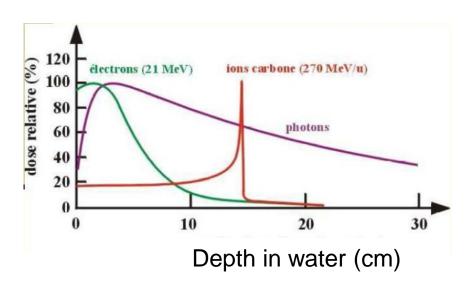
- \Box Minimum at βγ ~ 3 ... 4
- ☐ Similar for all elements~2 MeV/(g/cm²)

Mean energy loss rate in liquid (bubble chamber) hydrogen, gaseous helium, carbon, aluminium, iron, tin, and lead.



Ar-CH4 80:20, 8.5 atm, 185 samples

Particle ID relying on dE/dx depends on p (and δp) and particle_hypothesis_1,2


dE/dx: remarks

Bethe Bloch describes the average energy loss. For moderate thickness absorber fluctuations on this energy loss described by a Landau distribution. For thin absorber (small dx) fluctuations become large

The energy loss is larger at small *E*, i.e. end of the path in matter

→ Bragg peak Fundamental for medical application, hadron therapy

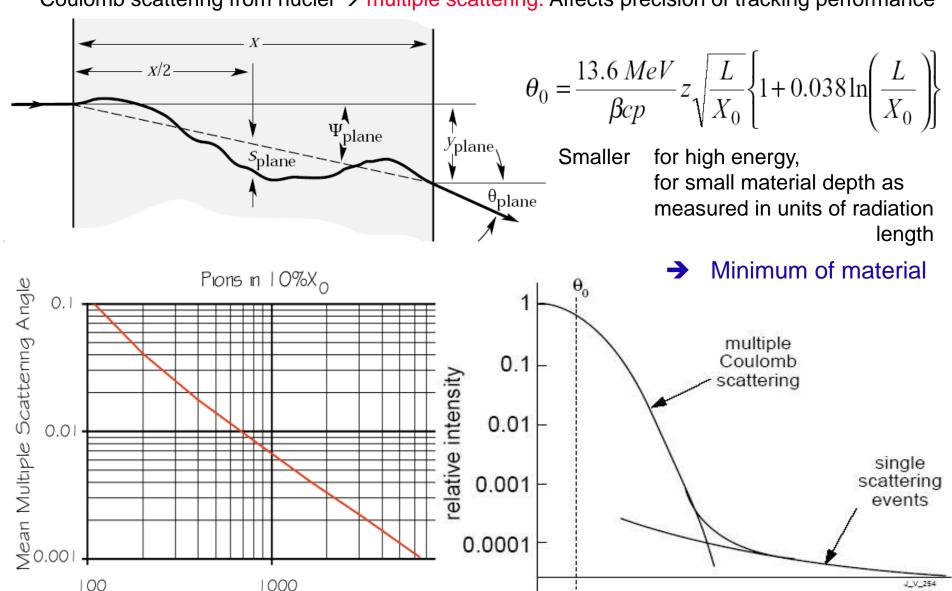
dE/dx: few illustrative numbers

Energy loss of a 10 GeV muon in 1 cm of plastic scintillator ($\gamma = 1$) or a gas chamber ($\gamma = 0.001$)?

Muons can be considered as a MIP with 2 MeV/(g/cm²)

- → 2 MeV in 1 cm scintillator
- → 2 keV in 1 cm of gas

To stop a 450 GeV muon beam, will need 900 m of concrete (density 2.5)!

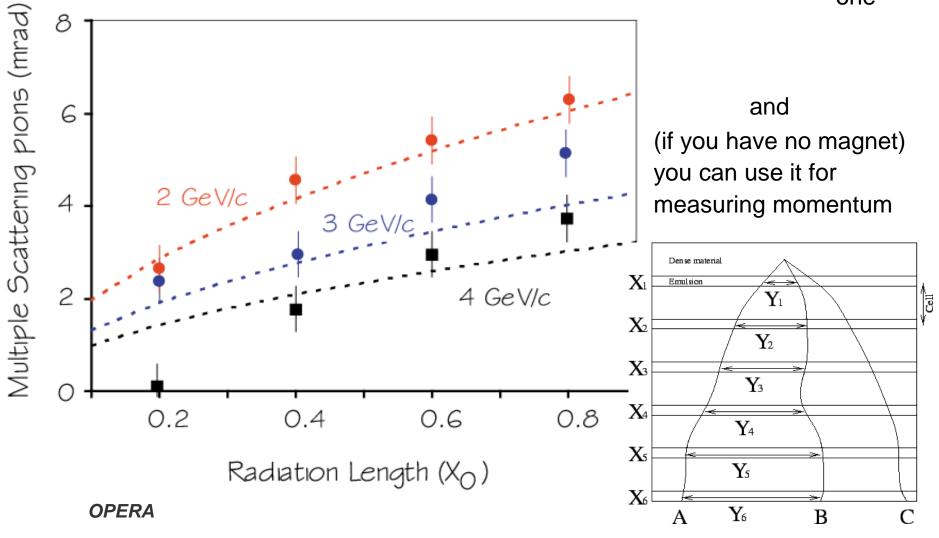

How many meters of air to stop an α particle of 2 MeV ?

Particle with very low β (below the minimum ionization) dE/dx around 700 MeV /(g/cm²) and ρ =1g/l \rightarrow 0.7 MeV/cm

Can stop α in 2-3 cm of air

Multiple scattering

☐ A charged particle traversing a medium is deflected by many small-angle scatters mainly due to Coulomb scattering from nuclei → multiple scattering. Affects precision of tracking performance



Pion momentum (MeV/c)

scattering angle θ

Multiple scattering

Effect of "0" if averaged for many particles, and seen as a fluctuation on a given one

... not the best means for measuring momentum though.

dE/dx : electrons (positrons)

Electrons (and positrons) are different as they are light.

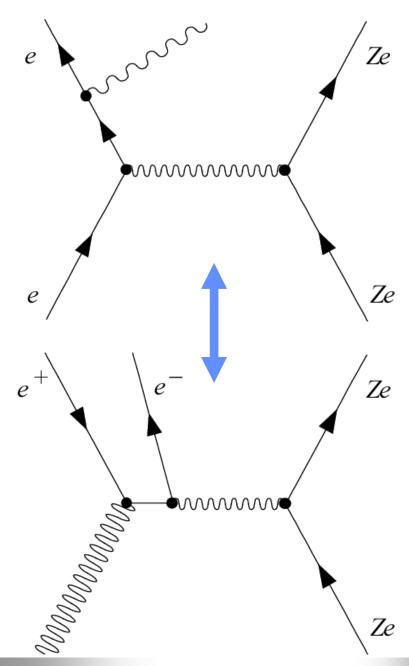
Energy loss for electrons/positrons involve mainly two different physics mechanisms:

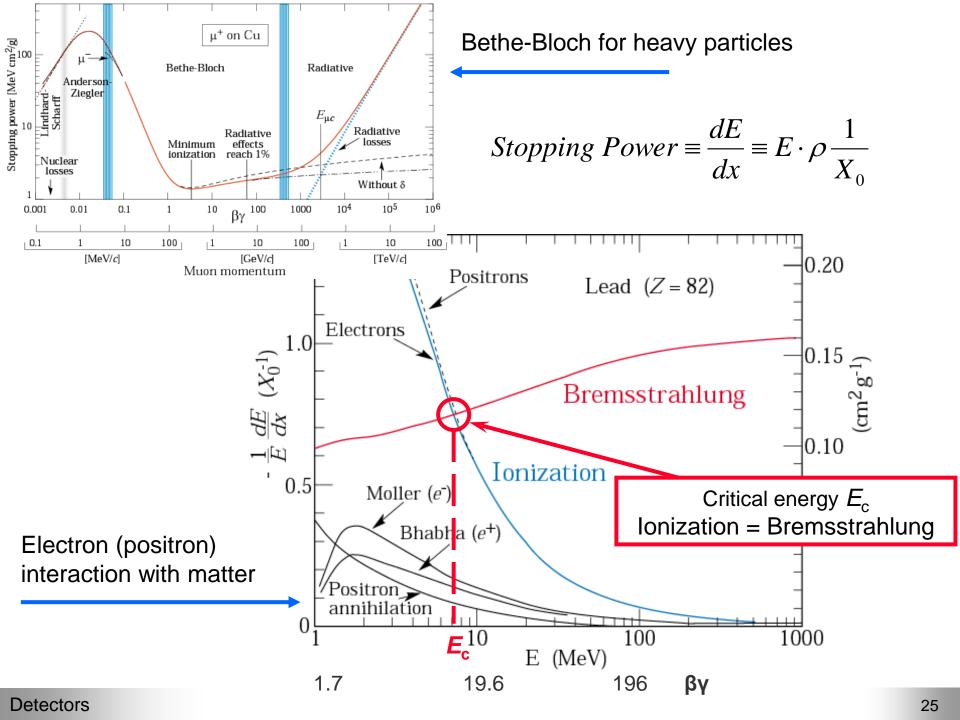
- Excitation/ionization

 But collision between identical particles + electron is now deflected
- □ Bremsstrahlung: emission of photon by scattering with the nucleus electrical field

At high energies radiative processes dominate

Bremsstrahlung


Bremsstrahlung is the emission of photons by a charged particle accelerated in the Coulomb field of a nucleus.


→ we now have an additional photon

Pair production

Creation of an electron/positron pair in the field of an atom.

→ we now have e+e- pair instead of initial photon

Define Radiation Length
$$X_0$$
 as the Radiative Mean Path :

$$\frac{1}{X_0} \equiv \frac{1}{E} \frac{dE}{\rho dx}$$

i.e. the distance over which the energy of electron/positron is reduced by a factor *e* by Bremsstrahlung. Measured in units of [g/cm2]

 $X_0 = \frac{716.4 \text{g.cm}^{-2} \text{A}}{Z(Z+1) \ln(187/\sqrt{Z})}$ Approximation: 0.20Positrons Lead (Z = 82)Electrons 1.0 $\frac{1}{E}\frac{dE}{dx}(X_0^{-1})$ Critical energy $E_{\rm c}$ Bremsstrahlung Ionization = Bremsstrahlung Ionization 0.5 Moller (e) Bhabha (e) $\{0.05\}$ Neglected for Positron annihilation majority of applications 10 100 1000 E (MeV)

Fractional energy loss per X_o in lead as a function of electron/positron energy

No simultaneous description of Ec for solids and gases (density effect)

→ fits to the data

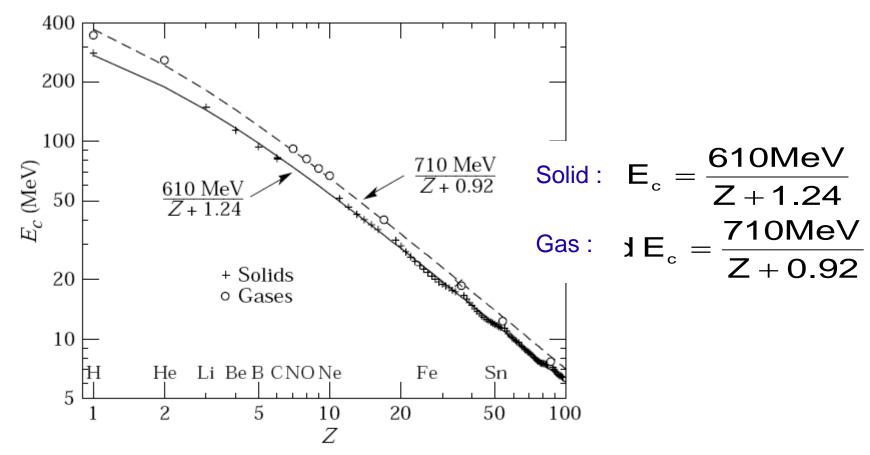


Figure 27.13: Electron critical energy for the chemical elements, using Rossi's definition [4]. The fits shown are for solids and liquids (solid line) and gases (dashed line). The rms deviation is 2.2% for the solids and 4.0% for the gases. (Computed with code supplied by A. Fassó.)

Energy loss for photons

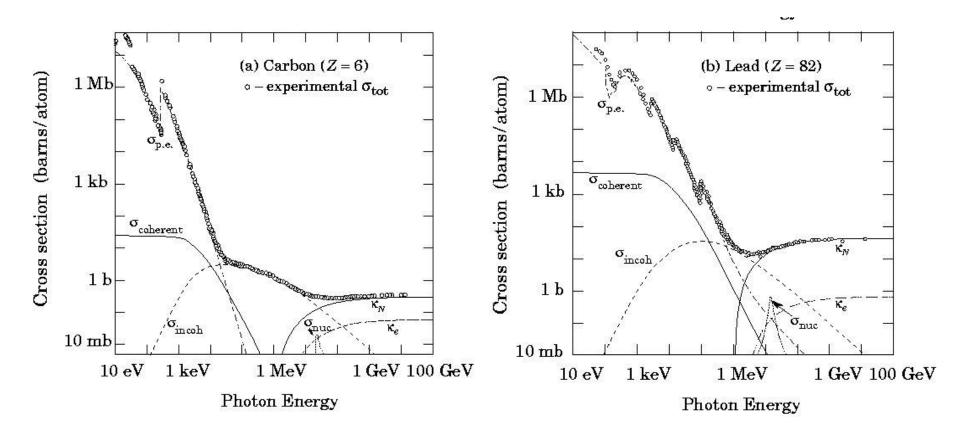
Energy loss for photons → three major physics mechanisms :

Photo electric effect : absorption of a photon by an atom ejecting an electron

$$\sigma = Z^{5} \alpha^{4} (\frac{m_{e}c^{2}}{E_{\gamma}})^{n} \text{ n} = 7/2 \text{ for } E << m_{e}c^{2} \text{ and } \rightarrow 1 \text{ for } E >> m_{e}c^{2}$$

Strong dependence with Z, dominant at low photon energy

Compton scattering


$$\sigma_{c}^{e} \propto \frac{lnE_{\gamma}}{E\gamma}$$
 and atomic compton = $Z \sigma_{c}^{e}$

□ Pair creation (similar to Bremsstrahlung): dominant for E >> m_ec²

$$\sigma_{\text{pair}} \approx 4\alpha r_{\text{e}}^2 Z^2 (\frac{7}{9} ln \frac{183}{Z^{\frac{1}{3}}}) = \frac{A}{N_{\text{A}}} (\frac{7}{9} \frac{1}{X_0}) \text{ Independent of energy !}$$

Probability of pair creation in 1 X_0 is $e^{-7/9}$, mean free path of a photon before creating a e^+e^- pair is $\Lambda_{pair} = 9/7 X_0$

Energy loss for photons

 $\sigma_{\rm p.e.}$ = Atomic photoelectric effect (electron ejection, photon absorption)

 $\sigma_{\text{Rayleigh}} = \text{Rayleigh (coherent) scattering-atom neither ionized nor excited}$

 $\sigma_{\text{Compton}} = \text{Incoherent scattering (Compton scattering off an electron)}$

 $\kappa_{\rm nuc} = \text{Pair production}, \text{ nuclear field}$

 $\kappa_e = \text{Pair production, electron field}$

 $\sigma_{\rm g.d.r.}$ = Photonuclear interactions

Related numbers

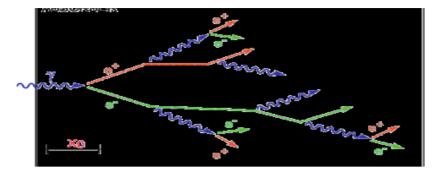
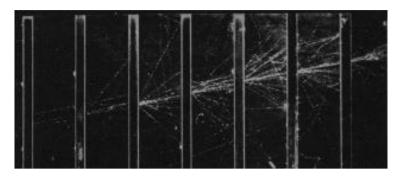
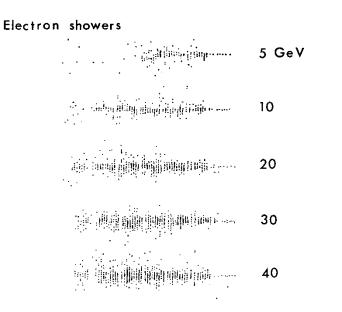
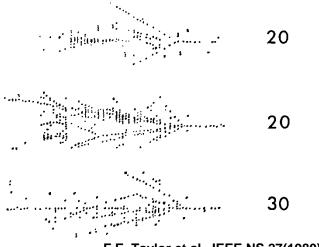

6. ATOMIC AND NUCLEAR PROPERTIES OF MATERIALS

Table 6.1. Revised May 2002 by D.E. Groom (LBNL). Gases are evaluated at 20°C and 1 atm (in parentheses) or at STP [square brackets]. Densities and refractive indices without parentheses or brackets are for solids or liquids, or are for cryogenic liquids at the indicated boiling point (BP) at 1 atm. Refractive indices are evaluated at the sodium D line. Data for compounds and mixtures are from Refs. 1 and 2. Futher materials and properties are given in Ref. 3 and at http://pdg.lbl.gov/AtomicNuclearProperties.

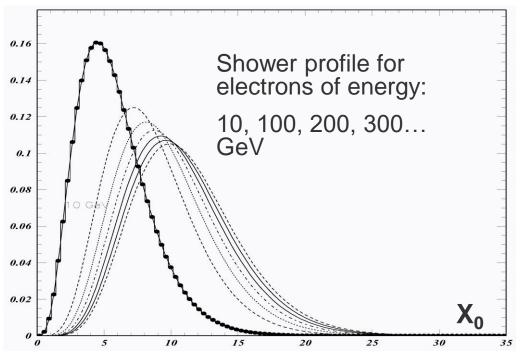

Material	Z	A	$\langle Z/A \rangle$	collision	interaction length λ_I	(MeV)	X_0 Radiation length X_0 $\{ m g/cm^2\}$ $\{ m cm\}$		Density $\{g/cm^3\}$ $(\{g/\ell\}$ for gas)	Liquid boiling point at 1 atm(K)	Refractive index n $((n-1)\times 10^6)$ for gas)
H ₂ gas	1	1.00794	0.99212	43.3	50.8	(4.103)	$61.28^{\ d}$	(731000)	(0.0838)[0.0899]		[139.2]
H ₂ liquid	1	1.00794	0.99212	43.3	50.8	4.034	61.28^{d}	866	0.0708	20.39	1.112
D_2	1	2.0140	0.49652	45.7	54.7	(2.052)	122.4	724	0.169[0.179]	23.65	1.128[138]
He	2	4.002602	0.49968	49.9	65.1	(1.937)	94.32	756	0.1249[0.1786]	4.224	1.024 [34.9]
Li	3	6.941	0.43221	54.6	73.4	1.639	82.76	155	0.534		
${\bf Be}$	4	9.012182	0.44384	55.8	75.2	1.594	65.19	35.28	1.848		3 5-1 5
C	6	12.011	0.49954	60.2	86.3	1.745	42.70	18.8	2.265^{e}		1 1 - 1 1
N_2	7	14.00674	0.49976	61.4	87.8	(1.825)	37.99	47.1	0.8073[1.250]	77.36	1.205 [298]
O_2	8	15.9994	0.50002	63.2	91.0	(1.801)	34.24	30.0	1.141[1.428]	90.18	1.22 [296]
F_2	9	18.9984032	0.47372	65.5	95.3	(1.675)	32.93	21.85	1.507[1.696]	85.24	[195]
Ne	10	20.1797	0.49555	66.1	96.6	(1.724)	28.94	24.0	1.204[0.9005]	27.09	1.092 [67.1]
Al	13	26.981539	0.48181	70.6	106.4	1.615	24.01	8.9	2.70		
Si	14	28.0855	0.49848	70.6	106.0	1.664	21.82	9.36	2.33		3.95
Ar	18	39.948	0.45059	76.4	117.2	(1.519)	19.55	14.0	1.396[1.782]	87.28	1.233 [283]
Ti	22	47.867	0.45948	79.9	124.9	1.476	16.17	3.56	4.54		
Fe	26	55.845	0.46556	82.8	131.9	1.451	13.84	1.76	7.87		2 7 2 2.
Cu	29	63.546	0.45636	85.6	134.9	1.403	12.86	1.43	8.96		()
Ge	32	72.61	0.44071	88.3	140.5	1.371	12.25	2.30	5.323		<u> </u>
Sn	50	118.710	0.42120	100.2	163	1.264	8.82	1.21	7.31		\$\frac{1}{2} \cdot \frac{1}{2}
Xe	54	131.29	0.41130	102.8	169	(1.255)	8.48	2.87	2.953[5.858]	165.1	[701]
W	74	183.84	0.40250	110.3	185	1.145	6.76	0.35	19.3		100 100
Pt	78	195.08	0.39984	113.3	189.7	1.129	6.54	0.305	21.45		() ()
Pb	82	207.2	0.39575	116.2	194	1.123	6.37	0.56	11.35		925_30
U	92	238.0289	0.38651	117.0	199	1.082	6.00	≈ 0.32	≈ 18.95		5 7 .

Electromagnetic showers


A high energy electron or photon incident on a thick absorber, initiates an EM cascade as pair production and Bremsstrahlung generate more electrons and photons with lower energy.


EM shower development

Lead absorbers in cloud chamber



F.E. Taylor et al., IEEE NS 27(1980)30

Longitudinal profile

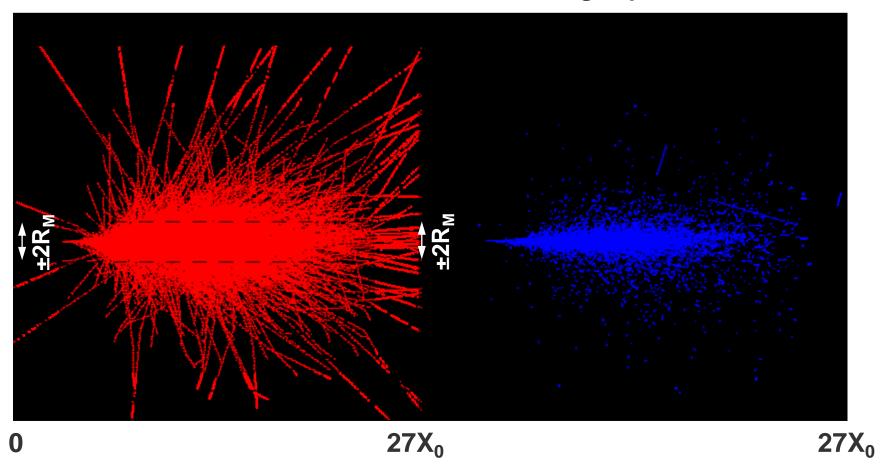
Transverse profile

- Multiple scattering for electrons
- ☐ Photons with energies in the region of minimal absorption travel away from shower axis

→ Molière radius sets transverse shower size, it gives the average lateral deflection of critical energy electrons after traversing 1X₀

$$R_{\rm M} = \frac{21 \text{MeV}}{E_{\rm C}} X_0 \left(Z >> 1 \right)$$

Transverse shower containment:

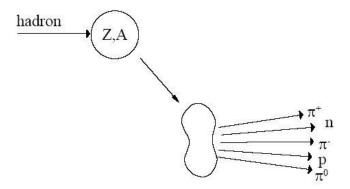

90% E₀ within 1R_M, 95% within 2R_M, 99% within 3.5R_M

From M. Diemoz, Torino 3-02-05

☐ EM shower development in liquid Krypton (Z=36, A=84)

Photons created

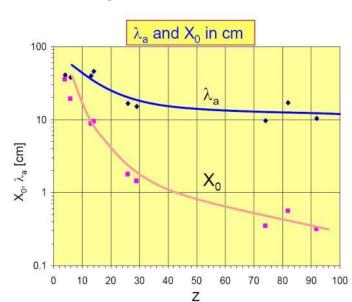
Charged particles created


GEANT simulation: 100 GeV electron shower in the NA48 liquid Krypton calorimeter

From D. Cockerill

Interactions of hadrons

Interaction of energetic hadrons (charged/neutral) through matter involves nuclear interaction:


excitation and nucleus break up => production of secondary particles + fragment

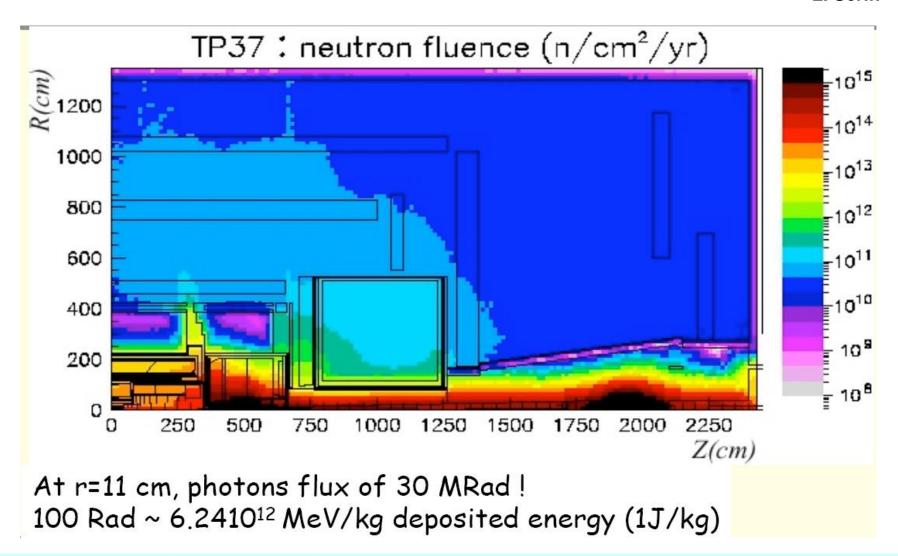
Number of particle produced ~In (E) with average transverse p of 0.35 GeV/c

For E > 1 GeV, $\sigma \sim \sigma_0 A^{0.7}$, with σ_0 = 35 mb and independent of particle type π ,p,K,... Convenient to introduce the hadronic interaction (absorption) length :

$$\lambda_{I(a)} = rac{A}{N_A \sigma_{total(inel)}} \propto A^{1/3} , N = N_0 e^{-rac{x}{\lambda_a}}$$

6. ATOMIC AND NUCLEAR PROPERTIES OF MATERIALS

Table 6.1. Revised May 2002 by D.E. Groom (LBNL). Gases are evaluated at 20°C and 1 atm (in parentheses) or at STP [square brackets]. Densities and refractive indices without parentheses or brackets are for solids or liquids, or are for cryogenic liquids at the indicated boiling point (BP) at 1 atm. Refractive indices are evaluated at the sodium D line. Data for compounds and mixtures are from Refs. 1 and 2. Futher materials and properties are given in Ref. 3 and at http://pdg.lbl.gov/AtomicNuclearProperties.

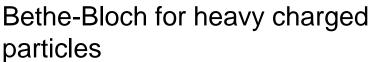

Material	Z	A	$\langle Z/A \rangle$	collision	Nuclear a interaction length λ_I $\{\mathrm{g/cm}^2\}$			X_0 $\{cm\}$	Density $\{g/cm^3\}$ $(\{g/\ell\}$ for gas)	Liquid boiling point at 1 atm(K)	Refractive index n $((n-1)\times 10^6$ for gas)
H ₂ gas	1	1.00794	0.99212	43.3	50.8	(4.103)	$61.28 \frac{d}{}$	(731000)	(0.0838)[0.0899]		[139.2]
H ₂ liquid	1	1.00794	0.99212	43.3	50.8	4.034	61.28^{d}	866	0.0708	20.39	1.112
D_2	1	2.0140	0.49652	45.7	54.7	(2.052)	122.4	724	0.169[0.179]	23.65	1.128[138]
He	2	4.002602	0.49968	49.9	65.1	(1.937)	94.32	756	0.1249[0.1786]	4.224	1.024 [34.9]
Li	3	6.941	0.43221	54.6	73.4	1.639	82.76	155	0.534		
Be	4	9.012182	0.44384	55.8	75.2	1.594	65.19	35.28	1.848		1 7 - 1 1
C	6	12.011	0.49954	60.2	86.3	1.745	42.70	18.8	2.265 e		
N_2	7	14.00674	0.49976	61.4	87.8	(1.825)	37.99	47.1	0.8073[1.250]	77.36	1.205 [298]
O_2	8	15.9994	0.50002	63.2	91.0	(1.801)	34.24	30.0	1.141[1.428]	90.18	1.22[296]
F_2	9	18.9984032	0.47372	65.5	95.3	(1.675)	32.93	21.85	1.507[1.696]	85.24	[195]
Ne	10	20.1797	0.49555	66.1	96.6	(1.724)	28.94	24.0	1.204[0.9005]	27.09	1.092 [67.1]
Al	13	26.981539	0.48181	70.6	106.4	1.615	24.01	8.9	2.70		
Si	14	28.0855	0.49848	70.6	106.0	1.664	21.82	9.36	2.33		3.95
Ar	18	39.948	0.45059	76.4	117.2	(1.519)	19.55	14.0	1.396[1.782]	87.28	1.233 [283]
Ti	22	47.867	0.45948	79.9	124.9	1.476	16.17	3.56	4.54		
Fe	26	55.845	0.46556	82.8	131.9	1.451	13.84	1.76	7.87		2 7. 1 25
Cu	29	63.546	0.45636	85.6	134.9	1.403	12.86	1.43	8.96		1 2 2
Ge	32	72.61	0.44071	88.3	140.5	1.371	12.25	2.30	5.323		9 <u>2—12</u> 2
Sn	50	118.710	0.42120	100.2	163	1.264	8.82	1.21	7.31		· ·
Xe	54	131.29	0.41130	102.8	169	(1.255)	8.48	2.87	2.953[5.858]	165.1	[701]
W	74	183.84	0.40250	110.3	185	1.145	6.76	0.35	19.3		37 <u>7</u> 3
Pt	78	195.08	0.39984	113.3	189.7	1.129	6.54	0.305	21.45		() ()
Pb	82	207.2	0.39575	116.2	194	1.123	6.37	0.56	11.35		9 <u>4 </u>
U	92	238.0289	0.38651	117.0	199	1.082	6.00	≈ 0.32	≈ 18.95		5

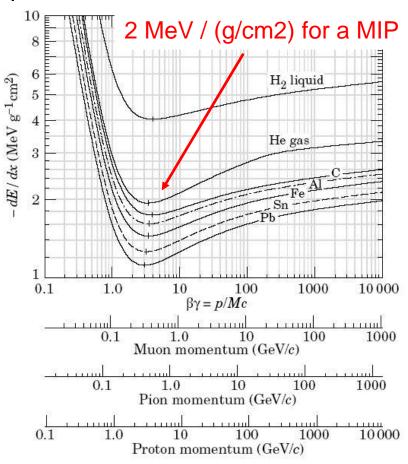
Interaction of neutron

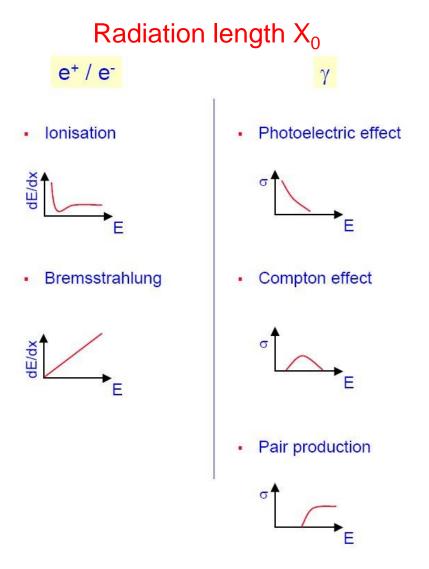
Neutron has no charge, can be detected only through charged particle produced in (weak or) strong interaction => short range => very penetrating

- □ Conversion and elastic scattering for E < 1 GeV. For instance
 - □ n + 6 Li \rightarrow α + 3 H, n+ 3 He \rightarrow p+ 3 H E < 20 MeV
 - \square n+p \rightarrow n+p E<1 GeV
- Hadronic cascade for E > 1 GeV
- Neutrons can travel sometimes for more than 1 µs in detectors
 - outside electronics readout window
- A lot of low energy neutrons produced in LHC experiments
- Interactions in the whole cavern ...

L. Serin




Strong constraint on detector technology and electronics : ageing in gaseous detectors light loss (transparency) in scintillators/cerenkov, atom displacement in solid detectors


Interaction of neutrinos

- Only weak interaction
- □ $v + n \rightarrow l^- + p$ or anti $v + p \rightarrow l^+ + n$ \rightarrow detect the charged lepton and the nucleon recoil
- □ Detection efficiency in ~1 m iron about 6.10⁻¹⁷...
- Whatever technological improvement, neutrinos detector can only be huge detector
- In e+e- collider experiment, indirect detection :
 - "Fully" hermetic detector (!)
 - Sum all visible energy/momentum
 - Use beam energy constraint → neutrino(s) are taking the missing energy/momentum

Summary of interaction of particles with matter

Interaction of hadrons: many different particles produced,

interaction length λ_I

Now we are (almost) ready to built our first detector ...

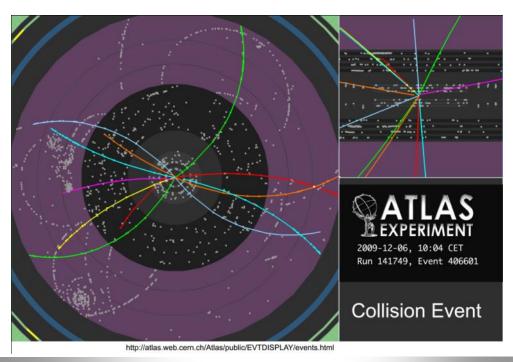
... but let us first look through common methods and tools

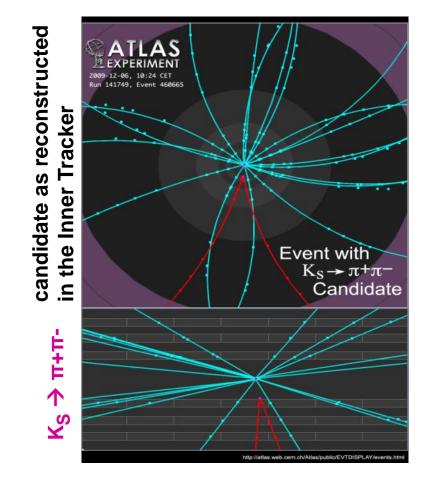
Non-destructive methods: charged particles → tracking

Gaseous detectors

Measure: hit and/or drift time

→ Position resolution: ~ 50 µm


→ Tracks reconstruction


+ Magnetic field

→ Momentum

[Measure also: energy loss dE/dx

→ Particle ID]

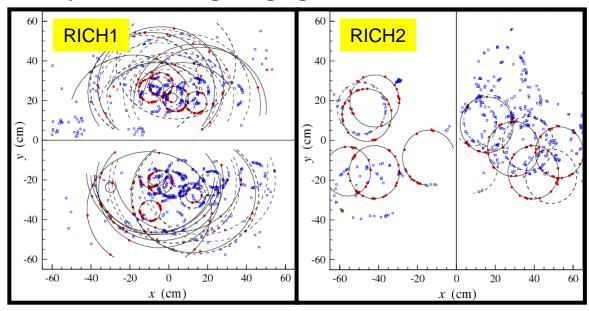
Silicon detectors

Measure: hits and/or amplitude

→ Position resolution: ~ 5 µm

→ Tracks & Vertices reconstruction

Cherenkov detectors


Measure: Cherenkov radiation angle (threshold)

→ Particle ID

Radiator
+ Cherenkov light
measurement

+ ...

- + Transition radiation detectors
- dE/dx from tracking detectors
- + Time-Of-Flight
- + ..

Destructive methods

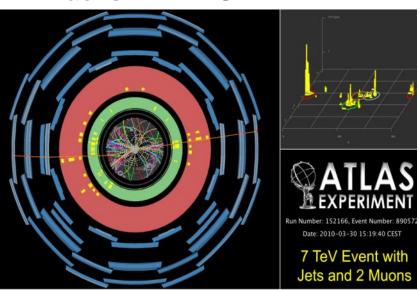
Calorimeters: electromagnetic and hadronic

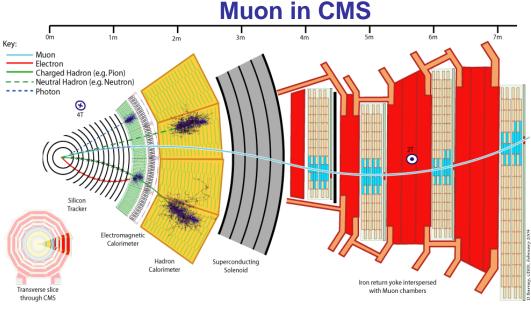
Measure: shower energy and/or shower shape

- → Energy resolution
- → Position resolution:

~few mm

→ Particle ID

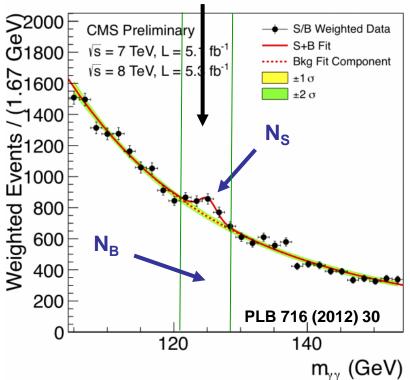



Muon detectors

Measure: Muon track after absorber

→ Particle ID

Muons in ATLAS



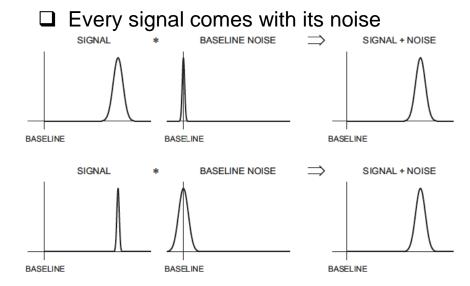
Criteria: efficiency and resolution

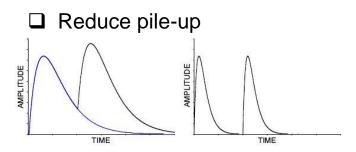
- ☐ Efficiency ~ amount of signal and Intrinsic detector resolution
 - □ Spatial resolution → degrade mass resolution via momentum measurement; contribute to combinatorial background via picking up random tracks and via PID.
 - □ Energy resolution → degrade mass resolution via energy measurement; contribute to combinatorial background via PID.
 - □ Time resolution → degrade mass resolution via contribution to spatial resolution in tracking devices; contribute to combinatorial background via pile-up and via PID.

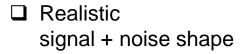
Is the excess due to the decay of a particle into two photons?

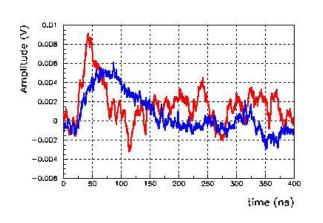
Statistical significance : $S = N_S / \sqrt{N_B}$

 $N_S(N_B)$: Number of signal (background) events, estimated in the peak region

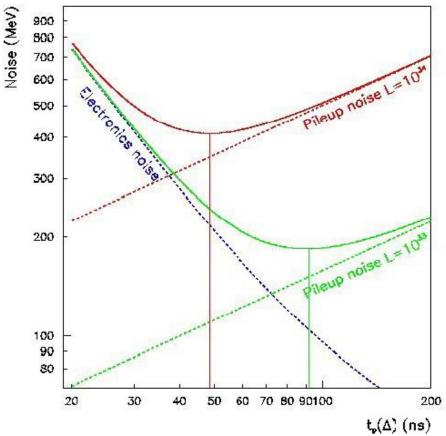

$$S \sim \epsilon \sqrt{L/\sigma}$$


- → Enlarge data sample
- → Increase detector efficiency
- → Reduce detector resolution


Convention : S > 5 \rightarrow Discovery

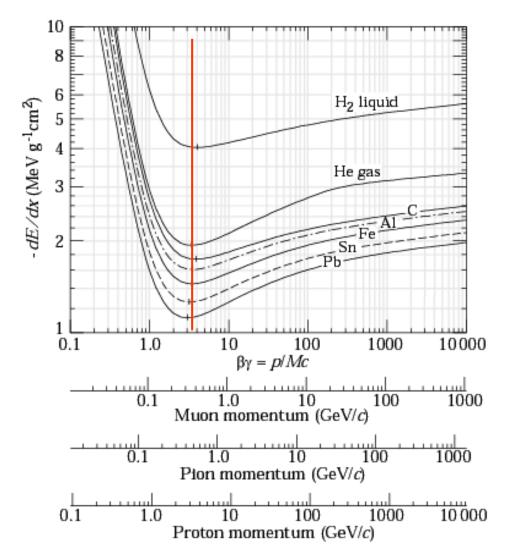

Criteria: efficiency and resolution

□ Signal treatment added to intrinsic detector resolution → Read-out electronics!



After E. Garutti et al.

Criteria: efficiency and resolution


- **Signal treatment** added to intrinsic detector resolution → **Read-out electronics**!
 - ☐ Example: ATLAS LAr calorimeter
 - Ionization signal 500 ns ~ 20 LHC BXs
 - Fast shaper reduces signal to 5 LHC BXs → less pile-up but higher electronics noise
 - Choice of optimal timing varies with luminosity

After E. Garutti et al.

Q1: The minimum is approximately independent of the material

- \Box Minimum at βγ ~ 3 ... 4
- ☐ Similar for all elements~2 MeV/(g/cm²)
 - ... why H2 is different?

Mean energy loss rate in liquid (bubble chamber) hydrogen, gaseous helium, carbon, aluminium, iron, tin, and lead.

Silicon detectors → Position resolution: ~ 5 µm

Gaseous detectors → Position resolution: ~ 50 µm

Calorimeters

Position resolution: few mm

Why calorimeters are important for position measurements?

Q3

Two electromagnetic showers are initiated by an electron and by a photon.

Which shower will penetrate deeper in the calorimeter?